Пространственная локализация функций в коре головного мозга

А. А. Винокуров, В.И. Гужов, И.О. Марченко, М.А. Савин Новосибирский государственный технический университет

Аннотация: В статье представлен обзор современных представлений о локализации функций в коре головного мозга с точки зрения его структуры.

Ключевые слова: головной мозг, кора головного мозга, contex cerebi, неокортекс, neocortex, цитоархитектоника, функциональная карта коры головного мозга, локализация функций в коре головного мозга, сенсомоторный центр, центр анализа вкусовых ощущений, слуховой центр, вестибулярный центр.

Введение

Людей всегда интересовала природа сложного человеческого поведения: мышления, механизмов памяти, психических процессов, творческих способностей. Этими вопросами в древние времена занимались представители различных религий, жрецы, философы. К концу XVIII в. ученые попытались решить эту проблему с точки зрения устройства головного мозга.

Франц Иосиф Галль первый попытался доказать, что все психические функции человека обусловлены устройством мозга. Помимо этого, Галль сформулировал учение о локализации функций и предложил определять наклонности характера и человеческую индивидуальность по шишкам на поверхности черепа. Идею осмеяли, а реальные заслуги Галля были забыты. В начале XIX в. была популярна теория М. Флуранса. Он считал, что кора больших полушарий мозга человека не имеет функциональной специализации и утверждал о равноправности всех отделов коры головного мозга. В 1861 г. Брок установил зависимость между поражением задней трети нижней лобной извилины левого полушария и нарушением артикулированной речи. В дальнейшем Брок и Варнике продолжали углублять идею локализации функций и получили некоторые факты, доказывающие эту идею. Открытие того, что кора головного мозга имеет

высоко дифференцированное строение и что с отдельных ее участков можно вызывать строго дифференцированные эффекты, прочно вошли в науку .

В настоящее время существует достаточно много методов исследования структуры и функционального состояния головного мозга . Развиваются и новые направления исследований.

Исследователи из Исследовательского центра Юлих и Монреальского неврологического института создали первую трехмерную цифровую модель мозга высокого разрешения и назвали ее BigBrain (большой мозг). Используя высокотехнологичную резку, исследователи разрезали человеческий мозг на 7404 тонких пластинок каждый с толщину полиэтиленовой пленки .

Далее, исследователи окрашивали листы для повышения контрастности, сфотографировали каждый лист планшетным сканером (с разрешением 13 тысяч на 11 тысяч пикселей.), а затем использовали вычислительные мощности суперкомпьютеров из семи центров Канады для цифровой склейки изображений (использовалось около 100 000 компьютерных процессоров). Исследователи проанализировали изображения объемом около одного терабайта. В результате получился самый подробный атлас мозга (Рис.1).

Рис. 1. - 3-0 атлас человеческого мозга (bigbrain.loris.ca) Такой анатомический атлас не только упрощает работу неврологов и нейрохирургов, но и предоставляет возможность понять, как мозг обрабатывает и воспринимает информацию.

Цифровая реконструкция мозга человека позволяет разглядеть его на уровне отдельных клеток: ее разрешение составляет 20 микрон. В общей сложности в ходе кропотливой работы, на которую ученые потратили 10 лет, было зафиксировано 80 миллиардов нейронов. В настоящее время делаются попытки построения модели мозга с разрешением 1 микрометр. Эта модель способна будет отразить морфологию мозга на субклеточном уровне.

В США объявили о выделении 130 миллионов долларов для проекта по картографированию мозга человека, чтобы помочь найти лечение от таких расстройств, как, например, болезнь Альцгеймера. К крупнейшим инвесторам в сфере исследования мозга относится траст Wellcome, который ежегодно вкладывает 80 миллионов фунтов в эту область. Европейский союз готов выделить миллиард евро на разработку модели человеческого мозга с использованием компьютерных технологий.

В данной статье рассматриваются современные представления о локализации функций в коре головного мозга с точки зрения его структуры. Сведения о функциональных полях головного мозга человека получены в различных исследованиях, например, при сопоставлении локальных разрушений участков коры с наблюдаемыми отклонениями в поведении, проведение прямой стимуляции коры микроэлектродами, позитронно-эмиссионной томографией и другими методами, описанными в .

Глобальная структура головного мозга

Головной мозг - высший орган нервной системы - как анатомо-функциональное образование может быть условно подразделен на несколько уровней (Рис. 2), каждый из которых осуществляет собственные функции.

I уровень - кора головного мозга - осуществляет высшее управление чувствительными и двигательными функциями, преимущественное управление сложными когнитивными процессами.

II уровень - базальные ядра полушарий большого мозга - осуществляет управление непроизвольными движениями и регуляцию мышечного тонуса.

III уровень - гиппокамп, гипофиз, гипоталамус, поясная извилина, миндалевидное ядро - осуществляет преимущественное управление эмоциональными реакциями и состояниями, а также эндокринную регуляцию.

IV уровень (низший) - ретикулярная формация и другие структуры ствола мозга - осуществляет управление вегетативными процессами.

Как анатомическое образование большой мозг (cerebrum) состоит из двух полушарий- правого и левого (hemisphererum cerebri dextrum et sinistrum).

В каждом полушарии имеется пять долей (Рис. 3, Рис.4):

1) лобная (lobus frontalis);

2) теменная (lobus parietalis);

3) затылочная (lobus occipitalis);

4) височная (lobus temporalis);

5) островковая, островок (lobus insularis, insule).

Рис. 2. - Доли полушарий головного мозга Все данные (и анатомические, и физиологические, и клинические) свидетельствуют о ведущей роли коры больших полушарий в мозговой организации психических процессов. Кора больших полушарий является

наиболее дифференцированным по строению и функциям отделом головного мозга.

Кора головного мозга (contex cerebi) подразделяется на следующие структурные элементы:

Древнюю (paleocortex);

Старую (archicortex);

Среднюю (mesocortex);

Новую (neocortex).

У человека новая кора - наиболее сложна по строению - по протяженности составляет 96% от всей поверхности полушарий, поэтому рассматривать будем именно её.

Все области новой коры построены по единому принципу. Наиболее типична для человека новая шестислойная кора, однако в разных отделах мозга число слоев различно. Каждый слой отличается по толщине, строению нейронов и их организации.

Цитоархитектонические поля

Кора полушарий головного мозга человека неоднородна даже в пределах одного полушария и имеет различный клеточный состав (Рис. 3).

Рис. 3. - Схема нейронного и цитоархитектонического строения некоторых зон коры головного мозга.

Это позволило выделить в ней однотипно организованные центры -цитоархитектонические поля.

Цитоархитектоника - это наука, изучающая особенности строения коры головного мозга, касающихся клеток. Изучает отличительные признаки различных формаций коры, касающиеся общего характера клеточного строения: величины и формы клеточных элементов, их распределения на слови, густоты их расположения во всем поперечнике коры и в отдельных её слоях, ширины коры и ее слоев, их деления на подслои, наличия тех или иных специальных клеточных форм в том или ином слое, распределения клеток в вертикальном направлении.

Учитывая, что, головной мозг различается у мужчин и женщин, у разных рас, этнических групп и даже внутри одной семьи, то расположение, размер и наличие цитоархитектонических полей у разных людей будут различаться.

Поэтому приведенные на рисунке 4, изображения, демонстрирующие цитоархитектонические поля, являются приближенными.

Рис. 4. - Карта цитоархитектонических полей мозга человека (Институт мозга): а - наружная боковая поверхность; б - внутренняя боковая поверхность; в - передняя поверхность; г - задняя поверхность; д - верхняя

поверхность; е - нижняя поверхность; ж - один из типичных вариантов расположения полей на надвисочной поверхностью.

Цифрами обозначены цитоархитектонические поля различные по строению. Границы цитоархитектонических полей совпадают с функционально специализированными участками неокортекса, поэтому цитоархитектонические карты головного мозга отражают представительство различных органов чувств, моторных и ассоциативных центров.

Сведения о функциональных полях человека получены в исследованиях различного характера, при сопоставлении локальных разрушений участков коры с наблюдаемыми отклонениями в поведении, проведение прямой стимуляции коры микроэлектродами, позитронно-эмиссионной томографией и другими методами, описанными в .

В настоящее время зависимости между цитоархитектоническими полями и их функциями не выявлены полностью. Рассмотрим то, что изучено.

Функциональные центры лобной области

Рассмотрим организацию сенсомоторных центров (Рис. 5) в полях 4 и 6, входящих в состав предцентральной извилины лобной доли головного мозга.

Рис. 5. - Сенсомоторные центры мозга человека (по данным разных авторов).

Между синей и красной линиями лежат моторные центры коры, а между красной и зелёной линиями - сенсомоторные.

Сенсомоторные центры мозга человека, отмеченные на рисунке 5: 1 - корень языка; 2 - гортань; 3 - нёбо; 4 - нижняя челюсть; 5 - язык; 6 - нижняя часть лица; 7 - верхняя часть лица; 8 - шея; 9 - пальцы руки; 10 -кисть; 11 - рука от плеча до кисти; 12 - плечо; 13 - лопатка; 14 - грудь; 15 -живот; 16 - голень; 17 - колено; 18 - бедро; 19 - пальцы ноги; 20 - большой палец ноги; 21 - четыре пальца ноги; 22 - стопа; 23 - лицо; 24 - глотка.

Рассмотрим организацию сенсомоторных центров (Рис. 6) в полях 8, 9, 44, 45, 46, входящих в лобные области головного мозга (Рис. 4).

Рис. 6. - Сенсомоторные центры лобной области мозга человека (по данным

Сенсомоторные центры мозга человека, отмеченные на рисунке 13.

1) моторное речевое поле, или зона Брока (поле 44, 45);

2) поле контроля над согласованными движениями (поле 46);

3) координация движений глаз (поле 8);

4) поле слежения за объектом и центр контроля движений глаз, связанные с вниманием (46);

5) тонус конечностей с противоположной стороны тела (поле 8);

6) сочетанное вращение тела (поле 8)

7) контроль над движениями глаз и головы в противоположную сторону, статика головы (поле 8).

Предцентральные области, ответственные за сложные произвольные движения, интегрированы со специализированными моторными полями. При помощи этих полей осуществляются сложные координированные движения

глаз, головы, рук и всего тела. Именно поэтому в неокортексе человека отсутствуют резкие цитоархитектонические границы между предцентральной и лобной областями.

Зона Брока (поля 44 и 45) является своеобразной надстройкой над моторными и сенсорными полями, расположенными вокруг центральной борозды. Размер этих полей непостоянен и может различаться у отдельных людей в несколько раз.

Мы подробно описали основные функциональные центры лобной области. Теперь кратко рассмотрим функции других областей коры головного мозга.

Островковая область отвечает за приём и анализ вкусовых ощущений, а также осознанно контролирует процесс питания.

Височная область отвечает за слух и анализ полученных звуков, а также отвечает за вестибулярный аппарат.

Теменная область, как и лобная, составляет значительную часть полушарий головного мозга. Функция теменной доли связана с восприятием и анализом чувствительных раздражений, пространственной ориентацией.

Затылочная область связана с восприятием и переработкой зрительной информации, организацией сложных процессов зрительного восприятия.

Заключение

Представлена глобальная структура головного мозга. Представлен обзор современных представлений по локализации функций в коре головного мозга. Показано, что локализация функций совпадает с локализацией различных структурных элементов мозга. Отметим, что в связи с большой изменчивостью головного мозга, представленные данные имеют

приближенный характер. У каждого человека функциональные зоны будут разными по площади и немного отличаться по расположению.

На данный момент существует много различного рода «пробелов» в понимании организации головного мозга и функций различных его разделов. Проблема локализации функций в коре головного мозга полностью не решена. Поэтому оправдано огромное внимание исследователей к изучению структуры и построению модели головного мозга.

Литература

1. Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. Москва: «Издательство Московского университета», 19б2. 42б с.

2. Гужов В. И., Винокуров А. А. Методы исследования структуры и функционального состояния головного мозга // Автоматика и программная инженерия. 2G14. № 3 (9). С. SG-SS.

3. Katrin Amunts, Claude Lepage, Louis Bor-geat, Hartmut Mohlberg, Timo Dickscheid, Marc-Étienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B. Lewis, Ana-Maria Oros-Peusquens, Nadim J. Shah, Thomas Lippert, Karl Zilles, Alan C. Evans. REPORT BigBrain: An Ultrahigh-Resolution 3D Human Brain Model. DOI: 10.1126/science.1235381. Science 21 June 2G13: Vol. 34G no. б139. pp.1472-1475.

4. Белик Д. В., Дмитриев Н.А., Пустовой С.А. Исследование путей аудиоцветовизуальной стимуляции полей памяти мозга в после-инсультный период // Актуальные проблемы электронного приборостроения (АПЭП-2G14): тр. 12 междунар. конф., Новосибирск, 2-4 окт. 2G14 г.: в 7 т. -Новосибирск: Изд-во НГТУ, 2G14. С. 12G-124.

5. M. Hallett. Transcranial magnetic stimulation and the human brain. Nature 4G6. 2GGG. pp. 147-15G.

6. Федотов А. А. Измерительный преобразователь вызванных аудиторных потенциалов биоэлектрической активности мозга // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/ru/magazine/archive/n4p1y2012/1107.

7. Миняева Н.Р. Вызванная активность мозга при восприятии фигур Канизса // Инженерный вестник Дона, 2012, №4 URL: ivdon.ru/magazine/archive/n4p1y2012/1131.

8. Kuo C-C, Luu P, Morgan KK, Dow M, Davey C. Localizing Movement-Related Primary Sensorimotor Cortices with Multi-Band EEG Frequency Changes and Functional MRI. PLoS ONE 9(11): e112103. 2014. p. 14

9. Савельев С.В. Возникновение мозга человека. М: ВЕДИ, 2010. 324 с.: ил.

10. Хомская Е. Д. Нейропсихология: 4-е издание. СПб.: Питер, 2005. 496 с.: ил.

1. Lurija A.R. Vysshie korkovye funkcii cheloveka i ih narushenija pri lokal"nyh porazhenijah mozga . Moskva: «Izdatel"stvo Moskovskogo universiteta», 1962. 426 p.

2. Guzhov V.I., Vinokurov A.A. Automatics and Program Engineering. 2014. № 3 (9). pp. 80-88.

3. Katrin Amunts, Claude Lepage, Louis Bor-geat, Hartmut Mohlberg, Timo Dickscheid, Marc-Etienne Rousseau, Sebastian Bludau, Pierre-Louis Bazin, Lindsay B. Lewis, Ana-Maria Oros-Peusquens, Nadim J. Shah, Thomas Lippert, Karl Zilles, Alan C. Evans. DOI: 10.1126/science.1235381. Science 21 June 2013: Vol. 340 no. 6139. pp.1472-1475.

4. Belik D. V., Dmitriev N.A., Pustovoj S.A. Aktual"nye problemy jelektronnogo priborostroenija (APJeP-2014): tr. 12 mezhdunar. konf.,

Novosibirsk, 2-4 okt. 2014 g.: v 7 t. - Novosibirsk: Izd-vo NGTU, 2014. pp. 120124.

5. M. Hallett. Nature 406. 2000. pp. 147-150.

6. Fedotov A.A. Inzenernyj vestnik Dona (Rus), 2012, №4 URL: ivdon.ru/ru/magazine/archive/n4p1y2012/1107.

7. Minjaeva N.R. Inzenernyj vestnik Dona (Rus), 2012, №4 URL: ivdon.ru/magazine/archive/n4p1y2012/1131.

8. Kuo C-C, Luu P, Morgan KK, Dow M, Davey C. PLoS ONE 9(11): e112103. 2014. p. 14

9. Savel"ev S.V. Vozniknovenie mozga cheloveka . M: VEDI, 2010. 324 p.: il.

10. Homskaja E.D. Nejropsihologija: 4-e izdanie . SPb.: Piter, 2005. 496 p: il.

Значение различных участков коры полушарий

головного мозга.

2. Двигательные функции.

3. Функции кожной и проприорицептивной

чувствительности.

4. Слуховые функции.

5. Зрительные функции.

6. Морфологические основы локализации функций в

коре головного мозга.

Ядро двигательного анализатора

Ядро слухового анализатора

Ядро зрительного анализатора

Ядро вкусового анализатора

Ядро кожного анализатора

7. Биоэлектрическая активность головного мозга.

8. Литература.


ЗНАЧЕНИЕ РАЗЛИЧНЫХ УЧАСТКОВ КОРЫ БОЛЬШИХ

ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА

С давних времен между учеными идет спор о местонахождении (локализации) участков коры головного мозга, связанных с различными функциями организма. Были высказаны самые разнообразные и взаимно противоположные точки зрения. Одни считали, что каждой функции нашего организма соответствует строго определенная точка в коре головного мозга, другие отрицали наличие каких бы то ни было центров; любую реакцию они приписывали всей коре, считая ее целиком однозначной в функциональном отношении. Метод условных рефлексов дал возможность И. П. Павлову выяснить ряд неясных вопросов и выработать современную точку зрения.

В коре головного мозга нет строго дробной локализации фун кций. Это следует из экспериментов над животными, когда после разрушения определенных участков коры, например двигательного анализатора, через несколько дней соседние участки берут на себя функцию разрушенного участка и движения животного восстанавливаются.

Эта способность корковых клеток замещать функцию выпавших участков связана с большой пластичностью коры головного мозга.

И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области.

Рисунок 1. Схема связи отделов коры с рецепторами.

1 – спинной или продолговатый мозг; 2 – промежуточный мозг; 3 – кора головного мозга


В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки.

В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры.

Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры.

Рассмотрим некоторые области, имеющие преимущественно то или иное значение. Схематическое расположение местонахождения этих областей приведено на рисунке 1.


Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма.

Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по спинному мозгу, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария. Вот почему кровоизлияние, ранение или какое-либо другое поражение одной из сторон больших полушарий влечет за собой нарушение двигательной деятельности мышц противоположной половины тела.

Рисунок 2. Схема отдельных областей коры больших полушарий головного мозга.

1 – двигательная область;

2 – область кожной

и проприорицептивной чувствительности;

3 – зрительная область;

4 – слуховая область;

5 – вкусовая область;

6 – обонятельная область


В передней центральной извилине центры, иннервирующие разные мышечные группы, расположены так, что в верхней части двигательной области находятся центры движений нижних конечностей, затем ниже-центр мышц туловища, еще ниже-центр передних конечностей и, наконец, ниже всех-центры мышц головы.

Центры разных мышечных групп представлены неодинаково и занимают неравномерные области.


Функции кожной и проприоцептивной чувствительности. Область кожной и проприоцептивной чувствительности у человека находится преимущественно позади центральной (роландовой) борозды в задней центральной извилине.

Локализация этой области у человека может быть установлена методом электрического раздражения коры головного мозга во время операций. Раздражение различных участков коры и одновременньш опрос больного об ощущениях, которые он при этом испытывает, дают возможность составить довольно четкое представление об указанной области. С этой же областью связано так называемое мышечное чувство. Импульсы, возникающие в проприорецепторах-рецепторах, находящихся в суставах, сухожилиях н мышцах, поступают преимущественно в этот отдел коры.

Правое полушарие воспринимает импульсы, идущие по центростремительным волокнам преимущественно с левой, а левое полушарие-преимущественно с правой половины тела. Этим объясняется то, что поражение, допустим, правого полушария вызовет нарушение чувствительности преимущественно левой стороны.

Слуховые функции. Слуховая область расположена в височной доле коры. При удалении височных долей нарушаются сложные звуковые восприятия, так как нарушается возможность анализа и синтеза звуковых восприятий.

Зрительные функции. Зрительная область находится в затылочной доле коры головного мозга. При удалении затылочных долей головного мозга у собаки наступает потеря зрения. Животное не видит, натыкается на предметы. Сохраняются только зрачковые рефлексы У человека нарушение зрительной области одного из полушарий вызывает выпадение половины зрения каждого глаза. Если поражение коснулось зрительной области левого полушария, то выпадают функции носовой части сетчатки одного глаза и височной части сетчатки другого глаза.

Такая особенность поражения зрения связана с тем, что зрительные нервы по пути к коре частично перекрещиваются.


Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А, Бец выступил с утверждением, что каждый учасгок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). В настоящее время удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов. Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека.

П
о И.П.Павлову, центр-это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.


Рисунок 3. Карта цитоархитектонических полей мозга человека (по данным института моэга АМН СССР) Вверху - верхнелатеральная поверхность,внизу- медиальная поверхносгь. Объяснение в тексте.


В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма.

1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражении, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6} и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.

2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от еет-чатки (зрительный анализатор, поле 77), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда отходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных функций.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира.

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где проецирована улитка. Повреждение ведет к глухоте.

2. Ядро зрительного анализатора находится в затылочной доле - поля 18, 19. На внутренней поверхности затылочной доли, по краям sulcus Icarmus, в поле 77 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза. При поражении ядра зрительного анализатора наступает слепотa. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле при поражении которого утрачивается ориентация в непривычной обстанвке.


3. Ядро вкусового анализатора, по одним данным, находится в нижней постцентральной извилине, близко к центрам мышц рта и языка, по другим - в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощу-ний. Установлено, что расстройство вкуса наступает при поражении поля 43.

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

4. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 7, 2, 3) и в пе верхней теменной области (поля 5 и 7).


Частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия (стереос - пространственный, гнозис - знание) связана с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.


Биоэлектрическая активность головного мозга.

Отведение биопотенциалов головного мозга - электроэнцефалография-дает представление об уровне физиологической активности головного мозга. Кроме метода электроэнцефалографии-записи биоэлектрических потенциалов, используется метод энцефалоскопии-регистрации колебаний яркости свечения множества точек мозга (от 50 до 200).

Электроэнцефалограмма является интегративным пространственно-временным показателем спонтанной электрической активности мозга. В ней различают амплитуду (размах) колебаний в микровольтах и частоту колебаний в герцах. В соответствии с этим в электроэнцефалограмме различают четыре типа волн: -, -, - и -ритмы. Для -ритма характерны частоты в диапазоне 8-15 Гц, при амплитуде колебаний 50-100 мкВ. Он регистрируется только у людей и высших обезьян в состоянии бодрствования, при закрытых глазах и при отсутствии внешних раздражителей. Зрительные раздражители тормозят -ритм.

У отдельных людей, обладающих живым зрительным воображением, -ритм может вообще отсутствовать.

Для деятельного мозга характерен (-ритм. Это электрические волны с амплитудой от 5 до 30 мкВ и частотой от 15 до 100 Гц Он хорошо регистрируется в лобных и центральных областях головного мозга. Во время сна появляется -ритм. Он же наблюдается при отрицательных эмоциях, болезненных состояниях. Частота потенциалов -ритма от 4 до 8 Гц, амплитуда от 100 до 150 мкВ Во время сна появляется и -ритм - медленные (с частотой 0,5-3,5 Гц), высокоамплитудные (до 300 мкВ) колебания электрической активности мозга.

Помимо рассмотренных видов электрической активности, у человека регистрируется Е-волна (волна ожидания раздражителя) и веретенообразные ритмы. Волна ожидания регистрируется при выполнении сознательных, ожидаемых действий. Она предшествует появлению ожидаемого раздражителя во всех случаях, даже при неоднократном его повторении. По-видимому, ее можно рассматривать как электроэнцефалографический коррелят акцептора действия, обеспечивающего предвидение результатов действия до его завершения. Субъективная готовность отвечать на действие стимула строго определенным образом достигается психологической установкой (Д. Н. Узнадзе). Веретенообразные ритмы непостоянной амплитуды, с частотой от 14 до 22 Гц, появляются во время сна. Различные формы жизне деятельности приводят к существенному изменению ритмов биоэлектрической активности мозга.

При умственной работе усиливается -ритм, -ритм при этом исчезает. При мышечной работе статического характера наблюдается десинхронизация электрической активности мозга. Появляются быстрые колебания с низкой амплитудой.Во время динамической работы пе-. риоды десинхронизированной и синхронизированной активности наблюдаются соответственно в моменты рабогы и отдыха.

Образование условного рефлекса сопровождается десинхронизацией волновой активности мозга.

Десинхронизация волн происходит при переходе от сна к бодрствованию. При этом веретенообразные ритмы сна сменяются

-ритмом, увеличивается электрическая активность ретикулярной формации. Синхронизация (одинаковые по фазе и направлению волны)

характерна для тормозного процесса. Она наиболее отчетливо выражена при выключении ретикулярной формации стволовой части мозга. Волны электроэнцефалограммы, по мнению большинства исследователей, являются результатом суммации тормозных и возбуждающих постсинаптических потенциалов. Электрическая активность мозга не является простым отражением обменных процессов в нервной ткани. Установлено, в частности, что в импульсной активности отдельных скоплений нервных клеток обнаруживаются признаки акустического и семантического кодов.

Кроме специфических ядер таламуса возникают и развиваются ассоциативные ядра, имеющие связи с неокортексом и определяющие развитие конечного мозга. Третьим источником афферентных воздействий на кору больших полушарий является гипоталамус, который играет роль высшего регуляторного центра вегетативных функций. У млекопитающих филогенетически более древние отделы переднего гипоталамуса связаны с...

Затрудняется формирование условных рефлексов, нарушаются процессы памяти, теряется избирательность реакций и отмечается неумеренное их усиление. Большой мозг состоит из почти идентичных половин – правого и левого полушарий, которые связаны мозолистым телом. Комиссуральные волокна связывают симметричные зоны коры. Тем не менее, кора правого и левого полушарий не симметричны не только внешне, но и...

Подход к оценке механизмов работы высших отделов головного мозга с использованием условных рефлексов был столь успешным, что позволил Павлову создать новый раздел физиологии - «Физиологию высшей нервной деятельности», науку о механизмах работы больших полушарий головного мозга. БЕЗУСЛОВНЫЕ И УСЛОВНЫЕ РЕФЛЕКСЫ Поведение животных и человека представляет собой сложную систему взаимосвязанных...


Морфологические основы динамической локализации функции в коре полушарии большого мозга (центры мозговой коры)

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре . Еще в 1874 г. киевский анатом В. А. Бец выступил с утверждением, что каждый участок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). Исследованиями Бродмана, Экономо и сотрудников Московского института мозга, руководимого С. А. Саркисовым, удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов; существует также деление коры более чем на 200 полей (У. Фогт и О. Фогт, 1919). Из этих полей, обозначаемых номерами, составлена специальная "карта" мозговой коры человека (рис. 299).

По И. П. Павлову, центр - это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтез, сочетание анализаторов друг с другом и с разными деятельностями организма. "Анализатор есть сложный нервный механизм, начинающийся наружным воспринимающим аппаратом и кончающийся в мозгу" (И. П. Павлов. Избр. произв., с. 193). С точки зрения И. П. Павлова, мозговой центр , или корковый конец анализатора , имеет не строго очерченные границы, а состоит из ядерной и рассеянной части - теория ядра и рассеянных элементов. "Ядро" представляет подробную и точную проекцию в коре всех элементов периферического рецептора и является необходимым для осуществления высшего анализа и синтеза. "Рассеянные элементы " находятся по периферии ядра и могут быть разбросаны далеко от него; в них осуществляется более простой и элементарный анализ и синтез. При поражении ядерной части рассеянные элементы могут до известной степени компенсировать выпавшую функцию ядра, что имеет огромное клиническое значение для восстановления данной функции.

До И. П. Павлова в коре различалась двигательная зона, или двигательные центры, передняя центральная извилина и чувствительная зона, или чувствительные центры, расположенные позади sulcus centralis Rolandi. И. П. Павлов показал, что так называемая двигательная зона, соответствующая передней центральной извилине, есть, как и другие зоны мозговой коры, воспринимающая область (корковый конец двигательного анализатора). "Моторная область есть рецепторная область... Этим устанавливается единство всей коры полушарий" (И. П. Павлов).

В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы внутренних анализаторов (см. рис. 289, 299).

1. , т. е. анализатора проприоцептивных (кинестетических) раздражений, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в передней центральной извилине (поля 4 и 6) и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра, двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (5-й, отчасти и 6-й) лежат гигантские пирамидные клетки Беца, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми узлами, ядрами головных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В передней центральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозгу. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме передней центральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору задней центральной извилины.

2. Ядро двигательного анализатора , имеющего отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром зрительного анализатора. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от сетчатки (зрительный анализатор, поле 17), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.

3. Ядро двигательного анализатора , посредством которого происходит синтез целенаправленных комбинированных движений , помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с передней центральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).

4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) - в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е. расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях ракетной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.

5. Ядро анализатора импульсов , идущих от внутренностей и сосудов (вегетативные функции), находится в нижних отделах передней и задней центральных извилин (В. Н. Черниговский). Центростремительные импульсы от внутренностей, сосудов, гладкой мускулатуры и желез кожи поступают в этот отдел коры, откуда исходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных и анимальных функций. Однако не следует считать, что только эта область коры влияет на деятельность внутренностей. На них оказывает влияние состояние всей коры полушарий большого мозга.

Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира .

1. Ядро слухового анализатора лежит в средней части верхней височной извилины, на поверхности, обращенной к островку, - поля 41, 42, 52, где спроецирована улитка. Повреждение ведет к корковой глухоте.

2. Ядро зрительного анализатора находится в затылочной доле - поля 17, 18, 19. На внутренней поверхности затылочной доли, по краям sulcus calcarinus, в поле 17 заканчивается зрительный путь. Здесь спроецирована сетчатка глаза, причем зрительный анализатор каждого полушария связан с полями зрения и соименными половинами сетчатки обоих глаз (например, левое полушарие связано с латеральной половиной левого глаза и медиальной правого). При поражении ядра зрительного анализатора наступает слепота. Выше поля 17 расположено поле 18, при поражении которого зрение сохраняется и только теряется зрительная память. Еще выше находится поле 19, при поражении которого утрачивается ориентация в непривычной обстановке.

3. Ядро обонятельного анализатора помещается в филогенетически самой древней части коры мозга, в пределах основания обонятельного мозга - uncus, отчасти аммонова рога (поле 11) (см. рис. 299, поля А и В).

4. Ядро вкусового анализатора , по одним данным, находится в нижней части задней центральной извилины, близко к центрам мышц рта и языка, по другим - в uncus, в ближайшем соседстве с корковым концом обонятельного анализатора, чем объясняется тесная связь обонятельных и вкусовых ощущений. Установлено, что расстройство вкуса наступает при поражении поля 43 (В. М. Бехтерев).

Анализаторы обоняния, вкуса и слуха каждого полушария связаны с рецепторами соответствующих органов обеих сторон тела.

5. Ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в задней центральной извилине (поля 1, 2, 3) и в коре верхней теменной области (поля 5 и 7). При этом тело спроецировано в задней центральной извилине вверх ногами, так что в верхней ее части расположена проекция рецепторов нижних конечностей, а в нижней - проекция рецепторов головы. Так как у животных рецепторы общей чувствительности особенно развиты на головном конце тела, в области рта, играющего огромную роль при захватывании пищи, то и у человека сохранилось сильное развитие рецепторов рта. В связи с этим область последних занимает в коре задней центральной извилины непомерно большую зону. Вместе с тем у человека в связи с развитием руки как органа труда резко увеличились рецепторы осязания в коже кисти, которая стала и органом осязания. Соответственно этому участки коры, относящиеся к рецепторам верхней конечности, резко превосходят область нижней конечности. Поэтому, если в заднюю центральную извилину врисовать фигуру человека головой вниз (к основанию черепа) и стопами вверх (к верхнему краю полушария), то надо нарисовать громадное лицо с несообразно большим ртом, большую руку, особенно кисть с большим пальцем, резко превосходящим остальные, небольшое туловище и маленькую ножку. Каждая задняя центральная извилина связана с противоположной частью тела вследствие перекреста чувствительных проводников в спинном и частью в продолговатом мозгу.

Частный вид кожной чувствительности - узнавание предметов на ощупь, стереогнозия (стереос - пространственный, гнозис - знание) - связан с участком коры верхней теменной дольки (поле 7) перекрестно: левое полушарие соответствует правой руке, правое - левой руке. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь, при закрытых глазах.

Описанные корковые концы анализаторов расположены в определенных областях мозговой коры, которая, таким образом, представляет собой "грандиозную мозаику, грандиозную сигнализационную доску" (И. П. Павлов). На эту "доску" благодаря анализаторам падают сигналы из внешней и внутренней среды организма. Эти сигналы, по И. П. Павлову, и составляют первую сигнальную систему действительности, проявляющуюся в форме конкретно-наглядного мышления (ощущения и комплексы ощущений - восприятия). Первая сигнальная система имеется и у животных. Но "в развивающемся животном мире на фазе человека произошла чрезвычайная прибавка к механизмам нервной деятельности. Для животного действительность сигнализируется почти исключительно только раздражениями и следами их в больших полушариях, непосредственно приходящими в специальные клетки зрительных, слуховых и других рецепторов организма. Это то, что и мы имеем в себе как впечатления, ощущения и представления от окружающей внешней среды, как общеприродной, так и от нашей социальной, исключая слово, слышимое и видимое. Это первая сигнальная система, общая у нас с животными. Но слово составило вторую, специально нашу сигнальную систему действительности, будучи сигналом первых сигналов... именно слово сделало нас людьми" (И. П. Павлов).

Таким образом, И. П. Павлов различает две корковые системы: первую и вторую сигнальные системы действительности, из которых сначала возникла первая сигнальная система (она имеется и у животных), а затем вторая - она имеется только у человека и является словесной системой. Вторая сигнальная система - это человеческое мышление, которое всегда словесно, ибо язык - это материальная оболочка мышления. Язык - это "...непосредственная действительность мысли" (К. Маркс и Ф. Энгельс. Сочинения, изд. 2, 1955, с. 448).

Путем весьма длительного повторения образовались временные связи между определенными сигналами (слышимые звуки и видимые знаки) и движениями губ, языка, мышц гортани, с одной стороны, и с реальными раздражителями или представлениями о них, с другой (из В. Н. Тонкова). Так на базе первой сигнальной системы возникла вторая.

Отражая этот процесс филогенеза, у человека в онтогенезе сначала закладывается первая сигнальная система, а затем вторая. Чтобы вторая сигнальная система начала функционировать, требуется общение ребенка с другими людьми и приобретение навыков устной и письменной речи, на что уходит ряд лет. Если ребенок рождается глухим или теряет слух до того, как он начал говорить, то заложенная у него возможность устной речи не используется и ребенок остается немым, хотя звуки он произносить может. Точно так же, если человека не обучать чтению и письму, то он навсегда останется неграмотным. Все это свидетельствует о решающем влиянии окружающей среды для развития второй сигнальной системы. Последняя связана с деятельностью всей коры мозга, однако некоторые области ее играют особенную роль в осуществлении речи. Эти области коры являются ядрами анализаторов речи.

Поэтому для понимания анатомического субстрата второй сигнальной системы необходимо, кроме знания строения коры большого мозга в целом, учитывать также корковые концы анализаторов речи (рис. 300).

1. Так как речь явилась средством общения людей в процессе их совместной трудовой деятельности, то двигательные анализаторы речи выработались в непосредственной близости от ядра общего двигательного анализатора.

Двигательный анализатор артикуляции речи (речедвигательный анализатор) находится в задней части нижней лобной извилины (gyrus Broca, поле 44), в непосредственной близости от нижнего отдела моторной зоны. В нем происходит анализ раздражений, приходящих от мускулатуры, участвующей в создании устной речи. Эта функция сопряжена с двигательным анализатором мышц губ, языка и гортани, находящимся в нижнем отделе передней центральной извилины, чем и объясняется близость речедвигательного анализатора к двигательному анализатору названных мышц. При поражении поля 44 сохраняется способность производить простейшие движения речевой мускулатуры, кричать и даже петь, но утрачивается возможность произносить слова - двигательная афазия (фазис - речь). Впереди поля 44 расположено поле 45, имеющее отношение к речи и пению. При поражении его возникает вокальная амузия - неспособность петь, составлять музыкальные фразы, а также аграмматизм (Е. К. Сепп) - неспособность составлять из слов предложения.

2. Так как развитие устной речи связано с органом слуха, то в непосредственной близости к звуковому анализатору выработался слуховой анализатор устной речи . Его ядро помещается в задней части верхней височной извилины, в глубине латеральной борозды (поле 42, или центр Вернике). Благодаря слуховому анализатору различные сочетания звуков воспринимаются человеком как слова, которые означают различные предметы и явления и становятся сигналами их (вторыми сигналами). С помощью его человек контролирует свою речь и понимает чужую. При поражении его сохраняется способность слышать звуки, но теряется способность понимать слова - словесная глухота, или сенсорная афазия. При поражении поля 22 (средняя треть верхней височной извилины) наступает музыкальная глухота: больной не знает мотивов, а музыкальные звуки воспринимаются им как беспорядочный шум.

3. На более высокой ступени развития человечество научилось не только говорить, но и писать. Письменная речь требует определенных движений руки при начертании букв или других знаков, что связано с двигательным анализатором (общим). Поэтому двигательный анализатор письменной речи помещается в заднем отделе средней лобной извилины, вблизи зоны передней центральной извилины (моторная зона). Деятельность этого анализатора связана с анализатором необходимых при письме заученных движений руки (поле 40 в нижней теменной дольке). При повреждении поля 40 сохраняются все виды движения, но теряется способность тонких движений, необходимых для начертания букв, слов и других знаков (аграфия).

4. Так как развитие письменной речи связано и с органом зрения, то в непосредственной близости к зрительному анализатору выработался зрительный анализатор письменной речи , который, естественно, связан в sulcus calcarfnus, где помещается общий зрительный анализатор. Зрительный анализатор письменной речи располагается в нижней теменной дольке, с gyrus angularis (поле 39). При повреждении поля 39 сохраняется зрение, но теряется способность читать (алексия), т. е. анализировать написанные буквы и слагать из них слова и фразы.

Все речевые анализаторы закладываются в обоих полушариях, но развиваются только с одной стороны (у правшей - слева, у левшей - справа) и функционально оказываются асимметричными. Эта связь между двигательным анализатором руки (органа труда) и речевыми анализаторами объясняется тесной связью между трудом и речью, оказавшими решающее влияние на развитие мозга.

"...Труд, а затем и вместе с ним членораздельная речь..." привели к развитию мозга. (К. Маркс и Ф. Энгельс. Сочинения, изд. 2, т. 20, с. 490). Этой связью пользуются и в лечебных целях. При поражении речедвигательного анализатора сохраняется элементарная двигательная способность речевых мышц, но утрачивается возможность устной речи (моторная афазия). В этих случаях иногда удается восстановить речь длительным упражнением левой руки (у правшей), работа которой благоприятствует развитию зачаточного правостороннего ядра речедвигательного анализатора.

Анализаторы устной и письменной речи воспринимают словесные сигналы (как говорит И. П. Павлов - сигналы сигналов, или вторые сигналы), что составляет вторую сигнальную систему действительности, проявляющуюся в форме абстрактного отвлеченного мышления (общие представления, понятия, умозаключения, обобщения), которое свойственно только человеку. Однако морфологическую основу второй сигнальной системы составляют не только указанные анализаторы. Так как функция речи является филогенетически наиболее молодой, то она и наименее локализована. Она присуща всей коре. Так как кора растет по периферии, то наиболее поверхностные слои коры имеют отношение ко второй сигнальной системе. Эти слои состоят из большого числа нервных клеток (100 млрд.) с короткими отростками, благодаря которым создается возможность неограниченной замыкательной функции, широких ассоциаций, что и составляет сущность деятельности второй сигнальной системы. При этом вторая сигнальная система функционирует не отдельно от первой, а в тесной связи с ней, точнее на основе ее, так как вторые сигналы могут возникнуть лишь при наличии первых. "Основные законы, установленные в работе первой сигнальной системы, должны также управлять и второй, потому что это работа все той же нервной ткани" (И. П. Павлов. Избр. произв., с. 238-239).

Учение И. П. Павлова о двух сигнальных системах дает материалистическое объяснение психической деятельности человека и составляет естественнонаучную основу теории отражения В. И. Ленина. Согласно этой теории в нашем сознании в форме субъективных образов отражается объективный реальный мир, существующий независимо от нашего сознания.

Ощущение - это субъективный образ объективного мира. "Ощущение - это превращение энергии внешнего раздражения в факт сознания" (В. И. Ленин).

В рецепторе внешнее раздражение, например световая энергия, превращается в нервный процесс, который в коре мозга становится ощущением.

Одно и то же количество и качество энергии, в данном случае световой, у здоровых людей вызовет в коре мозга ощущение зеленого цвета (субъективный образ), а у больного дальтонизмом (благодаря иному строению сетчатки глаза) - ощущение красного цвета.

Следовательно, световая энергия - это объективная реальность, а цвет - субъективный образ, отражение ее в нашем сознании, зависящее от устройства органа чувств (глаза).

Значит, с точки зрения ленинской теории отражения мозг может быть охарактеризован как орган отражения действительности.

После всего сказанного о строении центральной нервной системы можно отметить человеческие признаки строения мозга , т. е. специфические черты строения его, отличающие человека от животных (рис. 301, 302).

1. Преобладание головного мозга над спинным. Так, у хищных (например, у кошки) головной мозг в 4 раза тяжелее спинного, у приматов (например, у макака) - в 8 раз, а у человека - в 45 раз (вес спинного мозга 30 г, головного - 1500 г). По Ранке, спинной мозг по весу составляет у млекопитающих 22-48% веса головного мозга, у гориллы - 5-6%, у человека - только 2%.

2. Вес мозга. По абсолютному весу мозга человек не занимает первого места, так как у крупных животных мозг тяжелее, нежели у человека (1500 г): у дельфина - 1800 г, у слона - 5200 г, у кита - 7000 г. Чтобы вскрыть истинные отношения веса мозга к весу тела, в последнее время стали определять "квадратный указатель мозга" (Я. Я. Рогинский), т. е. произведение абсолютного веса мозга на относительный. Этот указатель позволил выделить человека из всего животного мира.

Так, у грызунов он равен 0,19, у хищных - 1,14, у китообразных (дельфин)- 6,27, у человекообразных обезьян - 7,35, у слонов - 9,82 и, наконец, у человека - 32,0.

3. Преобладание плаща над мозговым стволом, т. е. нового мозга (neencephalon) над старым (paleencephalon).

4. Наивысшее развитие лобной доли большого мозга. По Бродману, на лобные доли падает круглым счетом у низших обезьян 8-12% всей поверхности полушарий, у антропоидных обезьян- 16%, у человека - 30%.

5. Преобладание новой коры полушарий большого мозга над старой (см. рис. 301).

6. Преобладание коры над "подкоркой", которое у человека достигает максимальных цифр: кора составляет, по Дальгерту, 53,7% всего объема мозга, а базальные ядра - только 3,7%.

7. Борозды и извилины. Борозды и извилины увеличивают площадь коры серого вещества, поэтому чем больше развита кора полушарий большого мозга, тем больше и складчатость мозга. Увеличение складчатости достигается большим развитием мелких борозд третьей категории, глубиной борозд и их асимметричным расположением. Ни у одного животного нет одновременно такого большого числа борозд и извилин, при этом столь глубоких и асимметричных, как у человека.

8. Наличие второй сигнальной системы, анатомическим субстратом которой являются самые поверхностные слои мозговой коры.

Подводя итоги изложенному, можно сказать, что специфическими чертами строения мозга человека, отличающими его от мозга самых высокоразвитых животных, являются максимальное преобладание молодых частей центральной нервной системы над старыми: головного мозга - над спинным, плаща - над стволом, новой коры - над старой, поверхностных слоев мозговой коры - над глубокими.

Двигательные зоны коры . Движения возникают при раздражении коры в области прецентральной извилины. Особенно велика зона, управляющая движениями кисти руки, языком, мимической мускулатурой.

Сенсорные зоны коры : соматическая (кожная) чувствительность человека, чувства прикосновения, давления, холода и тепла проецируются в постцентральную извилину. В верхнейее части находится проекция кожной чувствительности ног и туловища, ниже - рук и еще ниже - головы. Проприоцептивная чувствительность (мышечное чувство) проецируется в постцентральную и предцентральную извилины. Зрительная зона коры находится в затылочной доле. Слуховая зона коры находится в височных долях больших полушарий. Обонятельная зона коры находится на основании мозга. Проекциявкусового анализатора , локализуется в области рта и языкапостцентральной извилины.

Ассоциативные зоны коры. Нейроны этих областей не связаны ни с органами чувств, ни с мышцами, они осуществляют связь между различными областями коры, интегрируя, объединяя все поступающие в кору импульсы в целостные акты научения (чтение, речь, письмо), логического мышления, памяти и обеспечивая возможность целесообразной реакции поведения. К этим областям относятся лобная и теменная доли коры большого мозга, которые получают информацию от ассоциативных ядер таламуса.

Боковые желудочки (правый и левый) являются полостями конечного мозга, залегают ниже уровня мозолистого тела в обоих полушариях и сообщаются через межжелудочковые отверстия с III желудочком. Они неправильной формы и состоят из переднего, заднего и нижнего рогов и соединяющей их центральной части.

Тема 17. Базальные ядра

Базальные ядра конечного мозга представляют собой скопления серого вещества внутри полушарий. К ним относится полосатое тело (стриатум) , состоящее из хвостатого и чечевицеобразного ядер, соединенных между собой. Чечевицеобразное ядро делится на две части: расположенную снаружи скорлупу и лежащий внутри бледный шар . Хвостатое ядро и скорлупа объединяются в неостриатум . Они являются подкорковыми двигательными центрами. Кнаружи от чечевицеобразного ядра расположена тонкая пластинка серого вещества - ограда. В переднем отделе височной доли лежит миндалевидное тело . Между базальными ядрами и таламусом находятся прослойки белого вещества, внутренняя, наружная и самая наружная капсулы. Через внутреннюю капсулу проходят проводящие пути.



Тема 1. Лимбическая система

В конечном мозге располагаются образования, составляющие лимбическую систему: поясная извилина, гиппокамп, маммилярные тела, передний таламус, миндалевидное тело, свод, прозрачная перегородка, гипоталамус . Они участвуют в поддержании постоянства внутренней среды организма, регуляции вегетативной функции и формировании эмоций и мотиваций. Эту систему иначе называют «висцеральным мозгом». Сюда поступает информация от внутренних органов. При раздражении лимбической коры изменяются вегетативные функции: кровяное давление, дыхание, движения пищеварительного тракта, тонус матки и мочевого пузыря.

Тема 19. Жидкие среды ЦНС: кровеносная и ликворная системы .Гематоэнцефалический барьер.

Кровоснабжение головного мозга осуществляется левой и правой внутренними сонными и ветвями позвоночных артерий. На основании мозга образуется артериальный круг (Вилизиев круг), который обеспечивает благоприятные условия для кровообращения головного мозга. От артериального круга в полушария проходят левые и правые передняя, средняя и задняя мозговые артерии. Кровь из капилляров собирается в венозные сосуды и от головного мозга оттекает в синусы твердой мозговой оболочки.

Ликворная система мозга. Головной и спинной мозг омываются спинномозговой жидкостью (ликвором), которая предохраняет мозг от механический повреждений, поддерживает внутричерепное давление, принимает участие в транспорте веществ из крови к тканям мозга. Из боковых желудочков спинномозговая жидкость поступает через отверстие Монро в третий желудочек, а затем через водопровод в четвертый желудочек. Из него спинномозговая жидкость переходит в спинно-мозговой канал и в подпаутинное пространство.

Гематоэнцефалический барьер . Между нейронами и кровью в головном мозге существует так называемый гематоэнцефалический барьер, который обеспечивает избирательное поступление веществ из крови к нервным клеткам. Этот барьер выполняет защитную функцию, так как обеспечивает постоянство спинномозговой жидкости. В его состав входят астроциты, эндотелиальные клетки капилляров, эпителиальные клетки сосудистых сплетений мозга.

Темы семинаров

1. Роль спинно-мозговых и черепно-мозговых нервов при восприятии сенсорной информации

2. Роль конечного мозга в восприятии сигналов из внешней и внутренней среды

3. Основные этапы эволюции цнс и онтогенеза нервной системы

4. Болезни мозга

5. Старение мозга

Задания для самостоятельной работы

1. Нарисуйте фронтальный срез спинного мозга со всеми известными вам обозначениями.

2. Нарисуйте сагиттальный срез головного мозга с обозначениями всех его отделов.

3. Нарисуйте сагиттальный срез спинного и головного мозга с обозначениями всех полостей мозга.

4. Нарисуйте сагиттальный срез головного мозга с обозначениями всех известных вам структур.

Вопросы для самоконтроля

1.Дайте определения основных понятий анатомии ЦНС:

Понятие нервной системы;

Центральная и периферическая нервная система;

Соматическая и вегетативная нервная система;

Оси и плоскости в анатомии.

2. Что является основной структурной единицей нервной системы?

3. Назовите основные структурные элементы нервной клетки.

4. Дайте классификацию отростков нервной клетки.

5. Перечислите размеры и формы нейронов. Расскажите о применение микроскопической техники.

6. Расскажите о ядре нервной клетки.

7. Каковы основные структурные элементы нейроплазмы?

8. Расскажите об оболочке нервной клетки.

9. Каковы основные структурные элементы синапса?

10. Каково значение медиаторов в нервной системе?

11. Каковы основные виды глии в нервной системе?

12. Какова роль миелиновой оболочки нервного волокна для проведения нервного импульса?

13. Назовите типы нервной системы в филогенезе.

14. Перечислите особенности строения сетевидной нервной системы.

15. Перечислите особенности строения узловой нервной системы.

16. Перечислите особенности строения трубчатой нервной системы.

17. Раскройте принцип билатеральной симметрии в строении нервной системы.

18. Раскройте принцип цефализации в развитии нервной системы.

19. Опишите строение нервной системы кишечнополостных.

20. Каково строение нервной системы кольчатых червей?

21. Каково строение нервной системы моллюсков?

22. Каково строение нервной системы насекомых?

23. Каково строение нервной системы позвоночных?

24. Дайте сравнительную характеристику строения нервной системы низших и высших позвоночных.

25. Опишите образование нервной трубки из эктодермы.

26. Дайте характеристику стадии трех мозговых пузырей.

27. Дайте характеристику стадии пяти мозговых пузырей.

28. Основные отделы ЦНС у новорожденного.

29. Рефлекторный принцип строения нервной системы.

30. Каково общее строение спинного мозга?

31. Охарактеризуйте сегменты спинного мозга.

32. Каково назначение передних и задних корешков спинного мозга?

33. Сегментарный аппарат спинного мозга. Какова организация спинального рефлекса?

34. Каково строение серого вещества спинного мозга?

35. Каково строение белого вещества спинного мозга?

36. Опишите комиссуральный и надсегментарный аппараты спинного мозга.

37. Какова роль восходящих путей спинного мозга в ЦНС?

38. Какова роль нисходящих путей спинного мозга в ЦНС?

39. Что такое спинномозговые узлы?

40. Каковы последствия повреждений спинного мозга?

41. Охарактеризуйте развитие спинного мозга в онтогенезе.

42. Каковы особенности строения основных оболочек ЦНС?

43. Охарактеризуйте рефлекторный принцип организации ЦНС.

44. Назовите основные части ромбовидного мозга.

45. Охарактеризуйте дорзальную поверхность продолговатого мозга.

46. Охарактеризуйте вентральную поверхность продолговатого мозга.

47. Каковы функции основных ядер продолговатого мозга?

48. Каковы функции дыхательного и сосудодвигательного центров продолговатого мозга?

49. Каково общее строение четвертого желудочка, полости ромбовидного мозга?

50. Назовите особенности строения и функции черепно-мозговых нервов.

51. Перечислите характеристики сенсорных, двигательных и вегетативных ядер черепно-мозговых нервов.

52. Каково назначение бульбарного парасимпатического центра головного мозга?

53. Каковы последствия бульбарных расстройств?

54. Каково общее строение моста?

55. Перечислите ядра черепно-мозговых нервов, лежащих на уровне моста.

56. Какие рефлексы в ЦНС соответствуют слуховым, вестибулярным ядрам моста?

57. Расскажите о восходящих и нисходящих путях моста.

58. Каковы функции латеральных и медиальных лемнисковых путей?

59. Каково назначение в ЦНС ретикулярной формации ствола головного мозга?

60. Какова роль синего пятна в организации мозговых функций. Что такое норадренергическая система мозга?

61. Какова роль в ЦНС ядер шва. Что такое серотонинергическая система мозга?

62. Каково общее строение мозжечка. Назовите его функции в ЦНС?

63. Перечислите эволюционные образования мозжечка.

64. Каковы связи мозжечка с другими отделами ЦНС. Передние, средние и задние ножки мозжечка?

65. Кора мозжечка. Древо жизни мозжечка.

66. Охарактеризуйте клеточное строение коры мозжечка.

67. Какова роль в ЦНС подкорковых ядер мозжечка?

68. Каковы последствия мозжечковых расстройства?

69. Какова роль мозжечка в организации движений?

70. Назовите основные функции в ЦНС среднего мозга. Что такое сильвиев водопровод.

71. Каково строение крыши среднего мозга. Передние и задние бугорки четверохолмия и их назначение?

72. Каково назначение основных ядер покрышки?

73. Каково назначение мезенцефалического парасимпатического центра?

74. Для чего необходимо околоводопроводное серое вещество. Раскройте особенности организации системы боли в ЦНС.

75. Что такое красные ядра среднего мозга. Дайте определение децеребрационной регидности?

76. Черное ядро и вентральная область покрышки. Какова роль в ЦНС дофаминергической системы мозга?

77. Нисходящие и восходящие пути среднего мозга. Пирамидная и экстрапирамидная системы ЦНС.

78. Каково строение и назначение ножек мозга?

79. Каково назначение дорзального и вентрального перекреста среднего мозга?

80. Опишите общее строение промежуточного мозга и его основные функции. Каково расположение третьего желудочка?

81. Назовите основные части таламического мозга.

82. Опишите строение и функции таламуса.

83. Опишите строение и функции надталамической области.

84. Опишите строение и функции заталамической области.

85. Какова роль гипоталамуса в организации функций ЦНС?

86. Нейрогуморальная функция мозга. Эпифиз и гипофиз, их расположение и назначение.

87. Какова роль круга Пейпеца в организации адаптивного поведения.

88. Гиппокамп, его строение и функции.

89. Поясная кора, ее строение и функции.

90. Миндалевидный комплекс, его стоение и функции.

91. Эмоционально-мотивационная сфера и ее мозговое обеспечение.

92. Что такое системы "награды" и "наказания" головного мозга? Реакция самораздражения.

93. Нейрохимическая организация подкрепляющих систем мозга.

94. Каковы последствия повреждений отдельных образований лимбической системы? Исследования на животных.

95. Опишите общее строение конечного мозга. Какова его роль в обеспечении адаптивного поведения человека и животных?

96. Назовите основные функции полосатого тела.

97. Эволюционные образования стриатума.

98. Хвостатое ядро, его расположение и назначение. Нигростриатная система головного мозга.

99. Вентральный стриатум, его строение и функции. Мезолимбическая система головного мозга.

100. Общее строение полущарий головного мозга (доли, борозды, извилины).

101. Дорзо-латеральная поверхность коры мозга.

102. Медиальная и базальная поверхности коры мозга.

103. Какова роль межполушарной асимметрии в организации адаптивного поведения. Мозолистое тело.

104. Цитоархитектоника коры головного мозга (слои коры и поля Бродмана).

105. Эволюционные образования коры мозга (новая кора, старая кора, древняя кора) и их функции.

106. Проекционные и ассоциативные области коры мозга и их назначение.

107. Речесенсорный и речедвигательный ценры коры мозга.

108. Сенсо-моторная кора, ее локализация. Проекции человеческого тела в сенсо-моторной коре.

109. Зрительная, слуховая, обонятельная, вкусовая корковые проекции.

110. Основы топической диагностики при повреждении участков коры головного мозга.

111. Лобная и теменная кора и их роль в обеспечении адаптивной деятельности головного мозга.

1.1. Из истории учения о локализации ВПФ

Идея о том, что различные участки мозга имеют разную спе­циализацию, т е функционируют не одинаково, возникла давно, задолго до появления нейропсихологии как научной дисципли­ны. Прежде всего она связана с именем французского невролога Франца Галля (F. Gaal), который первым предположил, что од­нообразная на вид масса мозга состоит из многих органов. Г. Хэд, написавший труд, в котором прослежена история научной мыс­ли в течение века (от середины XIX до середины XX столетия), сообщает интересные сведения о том, как сложилось это мнение у Ф. Галля.

В детстве Ф. Галль рос и учился вместе с мальчиком, которо­му значительно легче давалось учение. Если требовалось выучить что-нибудь наизусть, этот мальчик и некоторые другие ученики школы значительно обгоняли его по многим предметам, но при этом отставали от него в письменных работах. Ф. Галль заметил, что у этих учеников с хорошей памятью на устные тексты боль­шие «бычьи глаза» и шишки над надбровными дугами. На этом основании он связал способность легко заучивать наизусть с хо­рошей памятью на слова и пришел к выводу, что эта способность располагается в той части мозга, которая находится позади ор­бит. Так возникла мысль о том, что память на слова располагает­ся в лобных долях мозга. Всю жизнь он обращал внимание на строение черепа у разных людей и связывал с его особенностями те или иные имеющиеся у них способности. На базе этих взгля­дов возникла целая область знания - френология (от греч. - «душа»), содержащее указания на то, как по форме че­репа определить характер и способности человека. Ф. Галля ста­ли называть основателем френологии, считавшейся, да и про­должающей считаться, сомнительным направлением научных исследований. Взгляды Ф. Галля были расценены столь опасны­ми для религии и морали, что его лекции были запрещены соб­ственным письмом кайзера. Однако френологические представ­ления Ф. Галля, как бы их ни оценивали, сыграли большую роль. Они положили начало идее о наличии в мозге человека специали­зированных отделов, каждый из которых выполняет свою специ­фическую функцию. Это не позволяло более считать мозг еди­ной однородной массой

К 60-м годам XIX века обстановка в неврологической науке была накалена до предела. Вопросы о локализации функции в головном мозге поднимались в научных дебатах по любому по­воду. Несмотря на работы Ф. Галля и его последователей, глав­ным вопросом оставался вопрос о том, функционирует ли мозг как одно целое или он состоит из многих органов и центров, дей­ствующих более или менее независимо друг от друга. Наиболее остро стояла проблема локализации речи. Распространенным было мнение, согласно которому за речь ответственны передние отделы мозга.

Ф. Галль считал, что определенную мозговую локализацию имеют также другие ВПФ Так, он различал память вещей, мест, названий, грамматических категорий и располагал их в разных областях мозга. Как будет показано далее, эти взгляды являлись прогрессивными и во многом подтвердились впоследствии Мнение Ф. Галля о том, что более высокие по иерархии способ­ности имеют такую же очерченную локализацию в каком-либо из участков мозга, оказалось несостоятельным. Выяснилось, что такие психологические качества, как «смелость», «общительность», «любовь к родителям», «честолюбие», «инстинкт продол­жения рода» и др., не располагаются в «отдельных органах» моз­га, как утверждал Ф. Галль.

Тем не менее идея локализационизма получила мощное раз­витие. В августе 1861 года французский невролог Поль Брока на заседании Антропологического общества Парижа доложил свой знаменитый случай, доказавший то, что повреждение отдельной мозговой зоны, т.е. локальный очаг поражения, может разру­шить такую функцию, как речь, вызвав ее потерю, называемую афазией. На вскрытии черепа у пациента П. Брока по фамилии Лебран (Lebran), которого он наблюдал 17 лет, было обнаружено разрушение большого участка левого полушария мозга, охваты­вающего в основном речедвигательную зону. На основании того, что наиболее пострадавшими оказались речевые движения, эту область стали считать центром моторной речи, и афазию, возни­кающую вследствие его поражения, моторной афазией.

Через 10 лет после доклада П. Брока на заседании того же Общества немецкий невролог Карл Вернике (К. Wernice) пред­ставил другой случай локального поражения мозга, и тоже у больного с афазией. Пациент К. Вернике, хоть и сбивчиво, мог говорить сам, но практически не понимал речь других людей. Очаг поражения охватывал у данного больного большую часть височной доли левого полушария. Этой форме афазии К. Вернике дал название сенсорной, а пораженной области мозга - центра сенсорной речи, и афазию, возникающую вследствие его пора­жения, обозначил как сенсорную. Так учение о локализации ВПФ было в значительной мере продвинуто вперед.

Вскоре к центрам моторной и сенсорной речи были добавле­ны и другие. Интерес к вопросу о локальных поражениях мозга возрос во многих странах. Локализационистские идеи Ф. Галля получили еще более мощное звучание, и в науке началось увле­чение центрами, которое привело, по меткому выражению Г. Хэда, к строительству схем и диаграмм. Мозг стал расчерченным на множество областей, отражавших представления того времени о пестрой функциональной специализации зон мозга. Появилась знаменитая лоскутная карта мозга, где к чертам характера, лока­лизуемым Ф. Галлем, были присоединены еще многие, в том числе и приобретенные, пристрастия, например, к той или иной еде, к той или другой музыке и т.п. Таким образом, идея локали­зации функции была доведена до абсурда (рис. 9 см. цв. вкл.). Ес­тественно, что возникли серьезные возражения современников, считавших, что мозг не может функционировать столь «дробно» Этих ученых, составивших оппозицию узким локализационистам, назвали антилокализационистами. Наиболее ярким пред­ставителем этого течения был французский ученый Пьер Мари (P. Man). Он считал, что функциональная специализация мозга не может быть столь узкой и что собственно речевой областью является лишь левая височная доля.

Некоторые ученые занимали промежуточную позицию. Их ярким представителем был X. Джексон. По его мнению, каждая сложно организованная функция представлена в мозге на трех уровнях: 1) низшем (стволовом или спинальном); 2) среднем (в двигательных или сенсорных отделах коры мозга); 3) высшем (лобные доли мозга). Эти представления актуальны и в настоящее время, правда, с некоторыми уточнениями, о которых пой­дет речь далее. X. Джексону принадлежит знаменитое высказы­вание, что локализовать функцию и локализовать поражение - не одно и то же. Это означает, что в результате поражения мозга в одном месте может возникнуть неполноценность функциониро­вания в другом, а это уже не совпадало с представлениями узкого локализационизма.

1.2. Современные представления о локализации ВПФ (идея динамической локализации ВПФ)

Накопленный опыт в области последствий локальных пора­жений мозга послужил основой для возникновения теории сис­темного строения речевой функции и ее динамической локали­зации в мозге, которая положила конец тянувшейся более века дискуссии локализационистов и антилокализационистов. Эта теория была создана трудами отечественных неврологов и нейрофизиологов Н.А. Бернштейна, П.И. Анохина, А.И. Ухтомско­го, психолога Л.С. Выготского, основателя нейропсихологии А.Р. Лурии и др.

Термин «динамическая» по отношению к локализации обус­ловлен тем, что, соответственно представлениям названных уче­ных, одна и та же зона мозга может включаться в самые разные ансамбли мозговых областей, т.е. динамично менять свое поло­жение и роль. При осуществлении одной функции она функци­онирует совместно с одними зонами, а при осуществлении дру­гой - с другими, как цветные стеклышки в детской игрушке ка­лейдоскоп: стеклышки те же самые, а изображение разное - в зависимости от изменений их сочетания. В каждом конкретном ансамбле мозговых зон, участвующих в реализации функции, роль каждой из них специфична (рис. I ).

Такая способность нервных структур - быть по-разному за­действованными в разных функциях - является ярким вопло­щением биологического принципа экономии, которая позволяет сделать наиболее оптимальным способом реализации тот или иной вид психической деятельности.

Несмотря на такую сложность мозговой организации ВПФ, к настоящему времени гораздо больше известно о том, какую Функциональную специализацию имеют разные области мозга, что отражено на специальных картах мозга.

Указанные в них зоны являются результатом исследований не только в рамках нейропсихологии, но и гораздо более давних научных изысканий.

Выдающийся отечественный нейрофизиолог П.К. Анохин определяет каждую функциональную систему как определенный комплекс, совокупность афферентных сигнализаций, «который через акцепторы действия направляет выполнение ее функции».

^ ДИНАМИЧЕСКАЯ ЛОКАЛИЗАЦИЯ ВЫСШИХ ПСИХИЧЕСКИХ ФУНКЦИЙ

Рис. I

Условные обозначения: D - правое полушарие, S - левое полушарие, F - лобная доля, О - затылочная доля, Т - височная доля.

П.К. Анохин выявил важнейшую закономерность высшей нерв­ной деятельности, а именно то, что внешние афферентные раздра­жители, поступающие в ЦНС, распространяются в ней не линейно, как принято было считать ранее, а вступают в тонкие взаимодейст­ вия с другими афферентными возбуждениями. Эти «объединения» мо­гут пополняться новыми связями, обогащаясь ими. Деятельность в целом видоизменяется. Именно объединение афферентаций явля­ется непременным условием принятия решения.

Таким образом, афферентному синтезу как механизму выс­шей психической деятельности П.К. Анохин придавал первосте­пенное значение. Наконец, нельзя не остановиться на том, что он ввел в науку понятие «обратной афферентаций», т.е. механизм который информирует о результатах выполненного действия, чтобы организм оценил их. В настоящее время эта идея раз­вилась в целое научно-практическое направление медицины, называемое БОСом (биологической обратной связью).

Огромный вклад в понимание локализации ВПФ внесло уче­ние А.Р. Лурии о мозговой организации ВПФ, явившееся резуль­татом научно-практической работы с колоссальным числом че­репных ранений у практически здоровых молодых людей, кото­рых «поставила» Вторая мировая война. Эта трагедия позволила увидеть, в каком именно месте поврежден мозг, и фиксировать, какая именно функция при этом «выпадает». Подтвердились единичные находки классиков неврологии (П. Брока, К. Вернике и др.) о том, что существуют локальные ВПФ или их фрагмен­ты, т.е. те, которые могут осуществляться не за счет всего мозга, а какой-либо определенной его области. Полученные результаты вывели нашу страну в данной области на передовые рубежи в ми­ре, позволив создать, как уже упоминалось, новую научную дис­циплину - нейропсихологию.

Л.С. Выготский подчеркивал, что проблема мозговой орга­низации ВПФ не сводится лишь к тому, чтобы определить те зо­ны, которые их реализуют. Каждая ВПФ является, по существу, центром двух функций: 1) специфической, связанной с припи­санным ей видом психической деятельности; 2) неспецифиче­ской, делающей эту область способной участвовать в любом виде деятельности. Специфическая функция никогда не осуществля­ется каким-либо одним участком мозга, а является результатом его интеграции с другими областями мозга. Таким образом, лю­бая функция соотносится с деятельностью мозга, как фигура с фоном. При этом Л.С. Выготский подчеркивал, что интегративная сущность функций отнюдь не противоречит их дифференцированности. Напротив, считал он, дифференциация и интегра­ция не только не исключают друг друга, но, скорее, предполага­ют одна другую и в известном отношении идут параллельно.

Другими важнейшими особенностями представлений о лока­лизации ВПФ Л.С. Выготский считал: 1) изменчивость меж­функциональных связей и отношений; 2) наличие сложных динамических систем, в которых интегрирован ряд элементарных функций; 3) обобщенное отражение действительности в созна­нии. Он полагал, что все эти три условия отражают универсаль­ный закон философии, который гласит, что диалектическим скачком является не только переход от неодушевленной материи к одушевленной, но и от ощущения к мышлению степень авто­матизированности способа выполнения действия Л.С. Выгот­ский считал обусловленной тем иерархическим уровнем, на ко­тором осуществляется функция.

Наконец, принципиально важным следует считать убеждение Л.С. Выготского в том, что «развитие идет снизу вверх, а распад - сверху вниз». Эта крылатая фраза Л.С. Выготского достигает та­кого уровня обобщения, когда мысль становится практически не­оспоримой. Развиваясь, ребенок постигает мир от простого к сложному. В случае же потери (распада) функции человек возвра­щается к более элементарным знаниям, умениям и навыкам, ко­торые служат базисными для процессов компенсации.

Из представлений Л.С. Выготского о закономерностях раз­вития и распада непосредственно вытекает и следующее поло­жение: одинаково локализованные поражения приводят у ре­бенка и взрослого к совершенно разным последствиям. При расстройствах развития, связанных с каким-либо поражением мозга, страдает в первую очередь ближайший высший по отно­шению к пораженному участок, а у взрослого, т.е. при распаде функции, - напротив, ближайший низший, а ближайший выс­ший страдает относительно меньше.

Понятие локальных ВПФ в значительной мере развито Н.П. Бехтеревой, которая разработала понятия гибких и жестких звеньев мозговых систем. К жестким звеньям Н.П. Бехтерева от­несла большую часть областей регуляции жизненно важных внутренних органов (сердечно-сосудистой, дыхательной и др. систем), ко вторым - области анализа сигналов внешнего (и от­части внутреннего) мира, зависящих от условий, в которых чело­век находится. Н.П. Бехтеревой было выявлено, что изменение условий приводит к существенным изменениям в работе мозго­вых структур, обеспечивающих ту или иную функцию, а главное, в том, какие именно зоны мозга выключаются или включаются в деятельность. Эти данные показали, что локализация ВПФ может меняться не только от возрастных показателей, когда одни звенья как бы отмирают, а другие подключаются, или же от ин­дивидуальных особенностей мозговой организации психической деятельности, но и от условий, в которых деятельность протека­ет. Отсюда, помимо этого, вытекают далеко простирающиеся выводы о соблюдении необходимых условий воспитания, обуче­ния и вообще жизни человека, а также о подборе оптимальных условий для протекания этих процессов.

Французские ученые Ж. де Ажуриагерра и X. Экаэн обращают внимание на то, что ценность клинического понятия локализации чрезвычайно велика, но только в том случае, если учитывать, что разные функции локализованы по-разному. Анатомические, фи­зиологические и клинические данные позволяют установить, что локализация некоторых функций носит характер соматотопии (совпадают с проекцией в мозге неполноценно функционирующей части тела). К ним относятся области анализаторов, а также различные виды гнозиса, праксиса, в том числе и орально-артику­ляционного. Некоторые же виды таких функций (например, схема тела) значительно варьируют по структуре и локализации в зави­симости от расположения очага поражения внутри зоны их реали­зации или же в зависимости от индивидуальной организации моз­говой деятельности у разных больных. Об этом свидетельствуют различия в структуре дефекта при их поражениях.

По мнению Ж. де Ажуриагерра и X. Экаэна, принципиально важно положение X. Джексона о положительных и отрицатель­ных симптомах нарушения ВПФ. Под отрицательными понима­ется выпадение функции, а под положительными - освобожде­ние нижележащих зон, которые до поломки находились под контролем более высоких. К этому Ж. де Ажуриагерра и X. Экаэн добавляют, что высвобождение нижележащих областей мозга и соответствующих функций связано с нарушением равновесия между типом реагирования на внешние стимулы нижними и верхними зонами мозга.

Говоря о проблеме локализации, нельзя не учитывать и тот факт, согласно которому различные по этиологии поражения моз­га (сосудистые, опухолевые или травматические) обусловливают различия в симптомокомплексе развивающихся расстройств.

^ Вопросы по теме «Учение о локализации»:


  1. Какую идею о мозговом представительстве ВПФ внесли ра­боты классиков неврологии (P. Broca, K.Wermce и др.)?

  2. Что означают термины «локализационизм» и «антилокализационизм»?

  3. Что означает термин «динамическая локализация ВПФ»?

  4. Каковы основные положения Л.С. Выготского о локализа­ции ВПФ, их структуре, развитии и распаде?

  5. На каком материале было создано учение А. Р. Лурии?

Глава 2. Строение головного мозга

2.1. Общие представления о головном мозг

Для того чтобы рассмотреть современные представления не только о психологической структуре ВПФ человека, но и их моз­говой организации, целесообразно обратиться к современным представлениям о головном мозге в целом.

Головной мозг человека - это верхний отдел центральной нервной системы (ЦНС). Между ним и нижним отделом ЦНС (спинным мозгом) не существует границы, которая была бы выражена анатомически. Окончанием спинного мозга и началом головного условно служит верхний шейный позвонок. Отсюда понятно, какую важную роль для работы всей нервной системы имеет состояние каждой из частей ЦНС. В частности, тот факт, что ее «нервная ось» (головной и спинной мозг) едина, обуслов­ливает зависимость работы головного мозга от состояния спин­ного, особенно в детском возрасте. Это, в свою очередь, свиде­тельствует о том, что воспитательные меры по укреплению по­звоночного столба в самый ранний период жизни, а также по выработке правильной осанки в последующее время являются необходимыми.

Различные части мозга не одинаковы по иерархии. В нейро­психологии принято их анатомическое деление на блоки, учение b которых разработано А.Р. Лурией. Каждый из них составлен различными мозговыми структурами, о которых речь пойдет Далее.

Основную часть, самую большую по занимаемой площади, Составляет кора мозга (рис. 1, 2, цв. вкл.). Она имеет: а) поверх­ностные складки, которые обозначаются как борозды; б) глубо­кие складки, обозначаемые как щели; в) выпуклые гребни на по­верхности мозга - извилины.

Щели разделяют мозг на доли (рис. 2, цв. вкл.). Извилины де­лят доли на еще более дифференцированные в функциональном отношении участки.

Основными единицами нервной системы являются нервные клетки - нейроны (рис. 9 см. цв. вкл.). Как и другие клетки наше­го организма, нейрон содержит тело с расположенным в центре ядром и отростки, которые называются невритами. Одни из не­вритов передают нервные импульсы другим клеткам, другие - принимают их. Передающие отростки - длинные. Это аксоны Принимающие - короткие. Этодендриты. Каждая клетка имеет один аксон и много дендритов.

Нейронами составлено серое вещество мозга. Они чрезвы­чайно разнообразны по форме и функциональному назначению. Их отростки, аксоны, передающие информацию - это белое вещество мозга. Аксоны миелинизированы, т.е. покрыты жировым миелином, который повышает скорость передачи нервных им­пульсов. Аксоны надежно защищены глиальными клетками митохондриями, представляющими собой опорные клетки, обра­зующие белую жировую (миелиновую) прослойку - глию. Глия не является сплошной. На ней есть перехваты, называемые пе­рехватами Ранвье. Они облегчают прохождение нервных им­пульсов от клетки к клетке. Эту же роль играют пузырьки (нейромидиаторы), расположенные в окончаниях аксонов. Глиальные клетки не проводят нервные импульсы. Одни из них питают нейроны, другие защищают от микроорганизмов, третьи регули­руют поток спинномозговой жидкости.

В теле клетки имеются и другие структуры, обеспечивающие жизнедеятельность. Наиболее важными из них являются ри­босомы (тельца Ниссля). Рибосомы имеют форму гранул. Они синтезируют белки, без которых клетка не может выжить.

Несмотря на сложность клеточного устройства мозга, законы его функционирования во многом изучены и представляют чрез­вычайный интерес.

Испанский ученый Сантьяго Рамон-и-Кахал дал удивитель­но поэтичное описание мозга с точки зрения составляющих его нервных клеток. «Сад неврологии, - писал он, - представляет исследователю захватывающий, ни с чем не сравнимый спек­такль. В нем все мои эстетические чувства находили полное удовлетворение. Как энтомолог, преследующий ярко окрашен­ных бабочек, я охотился в красочном саду серого вещества с их тонкими, элегантными формами, таинственными бабочками ду­ши, биение крыльев которых, быть может, когда-то - кто знает? - прояснит тайну духовной жизни».

Мозг новорожденного ребенка насчитывает 12 миллиардов нейронов и 50 миллиардов глиальных клеток, взрослого челове­ка - 150 миллиардов нейронов (по И.А. Скворцову). Если их вытянуть в цепочку, вернее, в мост, то по нему можно пропуте­шествовать на Луну и обратно.

Размер каждой клетки чрезвычайно мал, но диапазон их раз­личий по этому признаку достаточно велик: от 5 до 150 микрон. В течение жизни человек теряет определенное число клеток, но в сравнении с общим их числом потери ничтожны (приблизи­тельно 4 миллиарда нейронов). Если совсем недавно считалось, что нервные клетки не вос­станавливаются, то в настоящее время эта истина перестала быть абсолютной. Нейробиолог С. Вайс из Канады в 1998 году выска­зал мнение, основанное на проведенных им исследованиях, что нейроны могут восстанавливаться. Правда, механизм такого вос­становления имеет место не у всех людей и не при всех условиях. Причины этого продолжают выясняться, но сам факт того, что это возможно, относится к числу на редкость сенсационных.

До того, как были открыты тайны созревания и функциони­рования нервных клеток, считалось, что нервы - это пустые (полые) трубки. По ним движутся потоки газов или жидкостей. Исаак Ньютон впервые отошел от этих представлений, заявив, что передачу нервного импульса осуществляет вибрирующая эфирная среда. Однако еще ближе к истинному положению вещей подошел итальянский исследователь Луиджи Гальвани. В научном мире, а также вне его, хорошо известен казус, ко­торый помог ему открыть биоэлектрическую природу функци­онирования нервной системы.

Имеется в виду оторвавшаяся лапка только что подвергшейся препарированию лягушки, которая случайно попала под дейст­вие электрического тока и стала сокращаться (дергаться). Так были заложены основы важнейшей на сегодняшний день науки о мозге - нейрофизиологии, изучающей электрические биопо­тенциалы мозга.

Широко известно, что нервные клетки объединяются в сети, которые называют также нервными цепями. У каждого нейрона приблизительно 7 тыс. таких цепей. По цепям от клетки к клет­ке передается информация. Местом обмена являются места со­единения аксона (длинного отростка клетки) одной клетки и дендрита (короткого отростка) другой клетки. Нейрон передает возбуждение другому нейрону через одну или множество точек контакта (синапсы) - (рис. 10, цв. вкл.). Когда импульс доходит до синаптического узла, выделяется особое химическое вещество - нейромедиатор. Оно заполняет синаптическую щель и распространяет нервный импульс на значительное рас­стояние. Чем больше синапсов, тем вместительнее в смысле па­мяти мозговой «компьютер». Каждая нервная клетка получает импульсы от многих сотен, и даже тысяч нейронов.

Согласно представлениям нейрофизиологии, скорость тече­ния электрического тока по проводам нервов равна скорости винтового самолета - 60-100 м/с. Обычно расстояние от синап­са до синапса составляет 1,5-2 м. Нервный импульс преодолева­ет его за 1/100 долю секунды. Сознание не успевает зафиксировать это время. Скорость мысли, таким образом, выше скорости све­та. Это находит отражение во многих фольклорных источниках. Вспомним, например, принцессу, которая, испытывая доброго молодца, загадывает ему загадки, и в частности, эту: «Что на све­те быстрее всего?» (имея в виду в качестве ответа - мысль).

Нервные клетки не делятся, как это делают другие клетки ор­ганизма, поэтому при повреждении они чаще всего погибают.

Несмотря на то, что нервный импульс имеет электрическую природу, связь между нейронами обеспечивается химическими процессами. Для этого в мозге имеются биохимические субстан­ции - нейротрансмиттеры и нейромодуляторы. В тот момент, когда электрический сигнал доходит до синапса, высвобождают­ся соответствующие трансмиттеры. Они, как транспортное сред­ство, доставляют сигнал к другому нейрону. Затем эти нейро­трансмиттеры распадаются. Однако на этом процесс передачи нервных импульсов не заканчивается, т.к. нервные клетки, находятся за синапсом, активизируются, и возникает постсинапсический потенциал. Он рождает импульс, движущийся к другому синапсу, и описанный выше процесс повторяется тысячи итысячи раз. Это позволяет воспринимать и обрабатывать колос­сальный объем информации.

Во многих публикациях по неврологии и нейрофизиологии отмечается, что сложнейшая мозговая деятельность обеспечива­ется, в сущности, простыми средствами. Некоторые из авторов отмечают, что эта простота отражает универсальный закон «до­стижения большой сложности через многократные преобразо­вания простых элементов» (Э. Голдберг). Аналогично этому, множество слов в языке складывается из ограниченного числа звуков речи и букв алфавита, бесчисленные музыкальные мело­дии - из малого числа нот, генетические коды миллионов людей обеспечиваются конечным числом генов и т.д.

2.2. Анатомическая и функциональная дифференциация мозга

2.2.1. Поля коры мозга

Согласно сложившимся представлениям, кора мозга имеет шесть основных слоев, каждый из которых состоит из различных по форме и размеру нервных клеток. Этот анатомический факт имеет, однако, не столь важное значение для понимания нейропсихологических феноменов, как функциональная дифферен­циация коры на три основных вида полей - первичные, вторич­ ные и третичные (рис. 8, цв. вкл.). Они различаются между собой по иерархии. Наиболее элементарными являются первичные, более сложными по строению и функционированию - вторич­ные, и, наконец, наиболее сложными по этим признакам явля­ются третичные поля.

Поля каждого из уровней имеют свою нумерацию, которая указывается на цитоархитектонических картах мозга. Наиболее распространенной из них является карта Бродмана (рис. 6, цв. вкл.).

Первичные поля - это «корковые концы анализаторов» и, как уже сообщалось выше, они функционируют от природы, врож­денно. Их локализация зависит от того, к какому анализатору они относятся.

Первичные поля, находящиеся в лобной доле (до центральной извилины), а именно поля 10, 11, 47, настроены на подготовку и исполнение двигательных актов, относящихся к физическому Уровню.

Первичные поля слухового анализатора располагаются пре­имущественно на внутренней поверхности височных долей мозга (поля 41, 42), кинестетического (чувствительного в целом) вблизи от центральной (Ролландовой) борозды, в теменной доле (поля 3, 1 и 2).

Первичные чувствительные (тактильные) поля характеризу­ются тем, что они являются проекционными зонами в отноше­нии определенных частей тела: верхние отделы принимают чувствительные сигналы (ощущения) от нижних конечностей (ног), средние обрабатывают ощущения от верхних конечностей, а нижние - от лица, включая отделы речевого аппарата (язык, гу­бы, гортань, диафрагму). Кроме того, нижние отделы теменной проекционной зоны принимают ощущения от некоторых внут­ренних органов. Алгоритм проекций тела в переднем блоке мозга тот же, что и в заднем. Они также являются проекционными, но уже в отношении не чувствительных (кинестетических), а двига­тельных функций. Главное отличие проекционных зон от других состоит в том, что размеры той или другой части тела определя­ются не анатомической, а функциональной значимостью.

Первичные клетки мозга в самом раннем онтогенезе функци­онируют изолированно друг от друга, подобно отдельным мирам в Космосе. Так, ребенок узнает голос матери, но не узнает ее ли­ца, если она молчит. Особенно часто разобщение слуховых и зрительных впечатлений на уровне ощущений наблюдается в от­ношении лица отца, которое младенцы видят реже, чем лицо ма­тери. В литературе описаны случаи, когда ребенок, увидев скло­ненное над ним лицо отца, начинает громко испуганно плакать, пока он не заговорит. Постепенно между первичными полями коры мозга прокладываются информационные связи (ассоци­ации). Благодаря им накапливается опыт ощущений, т.е. появля­ются элементарные знания о действительности. Например, ре­бенок «узнает», что сосание груди или бутылочки утоляет чувст­во голода.

2.2.2. Модально-специфическая кора мозга

Первичные поля однородны по клеточному составу, поэтому они обозначаются как модально-специфические. Обонятельные поля содержат только обонятельные нервные клетки, слуховые - только слуховые и т.п. Несмотря на универсальность физиологи­ческих и биохимических механизмов, обеспечивающих работу мозга, его различные отделы функционируют по-разному, т.е. имеют различную функциональную специализацию, представляя разные модальности.

Вторичные поля тоже модально-специфичны, хотя и менее однородны, чем первичные. В состав клеток преобладающей мо­дальности вкраплены клетки других модальностей. Третичные будучи зонами перекрытия, содержат не только клетки полых модальностей, но и их целые зоны. Исходя из этого, их обозначают как полимодальные или надмодальностные. Благодаря функционированию реализуются наиболее сложные ВПФ, и в частности, определенные речевые компоненты. Модально специфические структуры мозга вносят в них свой собственный и что особенно важно, суммарный вклад.

Вторичные и третичные поля коры, в отличие от первичных, имеют особенности функционирования в зависимости от лате пализации, т.е. расположения в том или другом полушарии мозга. Например, височные доли разных полушарий, относясь к одной и той же, а именно, слуховой модальности, выполняют разную «работу». Височная доля правого полушария ответственна за об­работку неречевых шумов (издаваемых природой, включая «го­лоса животных» и голоса людей, предметами, включая музы­кальные инструменты и саму музыку, которую можно считать высшим видом неречевого шума). Височная же доля левого по­лушария осуществляет обработку речевых сигналов. Помимо различий в специализации височных долей мозга, относящихся к разным полушариям, здесь можно усмотреть и столь характер­ный для природы принцип «защиты» наиболее важных функ­ций, и тем более такой важной и необходимой любому человеку, как речь.

Различия в функциональной специфике первичных, вторич­ных и третичных полей обусловливают и различия в их способ­ности заменять друг друга (компенсировать) в случае патологии. Разрушение первичных полей не восполнимо, т.е. утерянные физический слух, зрение, обоняние и прочее не восстанавлива­ются. В самое последнее время это положение подвергается пе­ресмотру в связи с изучением регенерирующей роли так назы­ваемых стволовых клеток. Функции поврежденных вторичных полей подлежат компенсации, осуществляемой за счет подклю­чения других, «здоровых» систем мозга и перестройки способа их деятельности. Функции пострадавших третичных полей ком­пенсируются относительно легко за счет полимодальности, по­зволяющей опираться на мощную систему ассоциаций, храня­щихся в каждом из них и между ними. Необходимо, однако, помнить, что и в этом случае важное значение имеют возрастные пороги и время, когда начаты восстановительные мероприятия. Наиболее благоприятен ранний возраст и своевременное начало лечебных коррекционно-восстановительных мер.

Функционально все три вида полей коры соотносятся между собой вертикально: функции первичных, над ними надстраива­ются функции вторичных, а над вторичными - третичных. Однако анатомически они не располагаются подобным образом, т.е. друг над другом. Первичные поля составляют ядро той или иной анализаторной зоны, которая носит в нейропсихологии на­звание модальности. Вторичные поля находятся дальше от ядра, т.е. сдвинуты к периферии зоны, а третичные - еще далее. Про­порциональны близости к ядру и размеры разных по иерархии полей: первичные занимают наименьшую площадь, вторичные - большую, а третичные - самые большие по размеру. Вследствие этого последние накладываются друг на друга, образуя так назы­ваемые зоны «перекрытия». К ним относится, например, самая важная для ВПФ зона ТРО - височно-теменно-затылочная (temporahs - висок; panetahs - темя; oxipitahs - затылок).

В осуществлении высших психических функций наибольшее участие принимает слуховая, зрительная и тактильная кора.

Слуховая зона относится к сенсорной (воспринимающей) коре мозга. Основным ее отделом является, как указывает А.Р. Лурия, височная область левого полушария. В нее входят раз­ные по иерархии участки, что обусловливает сложность ее струк­турной и функциональной организации. Наиболее значимой из них является ядерная зона слухового анализатора, обеспечиваю­щая физический слух (поля 41, 42), - первичные поля слуховой коры. Далее от ядра располагается периферический отдел зоны (третичное поле 22). За ними следует область среднего виска, пог­раничная с теменной и затылочной областями (третичным по­лем 21 и частично с третичным полем 37). Средневисочные (внеядерные) отделы височной доли представлены третичной корой и являются более сложно организованными. Они, по представле­ниям нейропсихологии, ответственны за восприятие не единич­ных звуков речи и слов, а их серий, и тесно связаны многочис­ленными ассоциативными волокнами и со зрительной корой, что обусловливает ее участие в реализации слова. В зоне 37-го поля имеется также небольшая область перекрытия (наложение друг на друга височной и затылочной коры).

По данным Е.П. Кок, представленным в ее монографии «Зрительные агнозии», написанной еще в 1967 году, эта область наиболее приспособлена для овладения и дальнейшего владения словом. Е П. Кок подчеркивает, что слово - это единство зри­тельного образа предмета и его «звуковой оболочки», и, следова­тельно, наличие в одной зоне мозга слуховой и зрительной коры способствует выработке прочных образно-вербальных ассоци­аций.

Слово и его зрительный образ становятся прочно спаянны.

Чем прочнее эта «спайка», тем надежнее слово хранится в памяти и, напротив, чем она слабее, тем легче слово забывается (амнезия слова).

А.Р. Лурия пишет, что слуховое восприятие включает анализ синтез доходящих до субъекта сигналов уже на первых этапах их поступления.

Из этого следует, что процесс восприятия речи базируется не только на физическом слухе, но и на способности к анализу ус­лышанного. Функции такого анализа приписаны преимущественно вторичному височному полю 22, расположенному в верхней височной области.

Именно оно ответственно за дискретное восприятие звуков речи, в том числе, что принципиально важно, и за выделение из них акустических образов сигнальных (смыслоразличительных) признаков, получивших название фонематических.

Признается также, что фонематическая система языка фор­мируется при непосредственном участии артикуляционного ап­парата, благодаря чему вырабатываются и упрочиваются акустико-артикуляционные связи.

Помимо собственно коркового уровня слуховой зоны, имеет­ся базальное слуховое поле 20 и медиальный («глубокий») висок. Этот отдел мозга входит в так называемый «круг Пейпеца» (гиппокамп - ядра зрительного бугра - перегородки и мамиллярные тела - гипоталамус).

Медиальные отделы виска тесно связаны с неспецифически­ми образованиями лимбико-ретикулярного комплекса (отдела мозга, регулирующего тонус коры) - (рис. 12, цв. вкл).

Такой состав медиального виска обусловливает его важней­шую особенность - способность регулировать состояние актив­ности коры мозга в целом, процессов нейродинамики, вегета­тивной сферы, а в рамках высшей психической деятельности - эмоций, сознания и памяти.

^ Зрительная кора

Первичная зрительная кора простирается с обеих сторон вдоль шпорной борозды на медиальной поверхности затылочной Доли и распространяется на конверситальную поверхность заты­лочного полюса. Ядерная зона зрительной коры - это первичное корковое поле 17. Вторичные поля коры (18, 19) составляют ши­рокую зрительную сферу. По отношению к принципу функционирования этой зоны актуален тот же пересмотр принципов Рефлекторной теории ощущений, о котором упоминалось при освещении функциональной специализации височной (слухо­вой) коры. В результате этого пересмотра зрительное восприятие стало рассматриваться не как пассивный процесс, а как активное действие

Основным отличием деятельности зрительной, как и кожно-кинестетической, теменной коры, является то, что воспри­нимаемые ею сигналы не выстраиваются в последовательные ря­ды, а объединяются в одновременные группы Благодаря этому обеспечиваются сложные зрительные дифференцировки, пред­полагающие способность выделять тонкие оптические призна­ки При очаговых поражениях этой области возникает нередко встречающаяся в клинической практике оптическая агнозия. Еще в 1898 году Э Лессауэр (Е Lissauer) обозначил ее как «аппер­цептивную душевную слепоту» и отметил, что больные, страдаю­щие ею, не узнают зрительных изображений даже знакомых предметов, хотя могут узнавать их на ощупь. Впоследствии опти­ческая зрительная агнозия была подробно изучена и описана Е. П. Кок, Л С Цветковой и др., показавшими ее связь с амнестической афазией

В наиболее высокой по иерархии теменно-затылочной коре, представляющей собой области, где соединяются центральные концы зрительного и тактильного анализаторов («зоны перекрытия»), стимулы внешней среды объединяются в «симультанные синтезы», позволяющие воспринимать одномоментно сложные изображения, например, сюжетные картины. По представлени­ям нейропсихологии, поражение данной области приводит к на­рушениям симультанного зрительного гнозиса и системно обус­ловленной семантической афазии.

^ Тактильная кора

Синтез тактильных сигналов осуществляют теменные отделы коры головного мозга, аналогично тому, как теменно-затылочная область осуществляет оптическое восприятие Ядерной зоной этого анализатора является область задней центральной извили­ны Первичные поля тактильной коры обеспечивают кожно-кинестетическую чувствительность на физическом уровне (поле 3) Вторичные оке поля (2, 1, 5, 7) специализированы в отношении сложной дифференциации тактильных сигналов (стереогноза) Благодаря им возможно распознавание предметов на ощупь.

^ Двигательная кора

Двигательный «анализатор» понимается как состоящий из двух, совместно работающих отделов мозговой коры (постцентяльного и прецентрального) Вместе они составляют сенсомоторн ую область коры.

Постцентральная кора, или, иначе, нижнетеменная кора, наравне первичных полей (10, 11, 47) принимает тактильные сиг­налы и перерабатывает их в тактильные ощущения, в том числе и речевые

На уровне вторичных полей (2, 1, 5, 7) она обеспечивает ре­ализацию отдельных поз - кинестезии тела, конечностей, рече­вого аппарата

В рамках переднего блока мозга левого полушария для рече­вой функции наиболее значимой является передняя центральная извилина - премоторная кора на уровне вторичных полей (6, 8) Она обеспечивает реализацию различных двигательных актов, представляющих собой серию последовательных движений и носящих название динамического или, иначе, эфферентного, прак сиса Он, в свою очередь, составляет второе, дополнительно к афферентному, произвольное двигательное звено. Важно, что премоторная кора является способной не только выстраивать, но и запоминать двигательные последовательности (кинетические мелодии), без чего в рамках речевой деятельности было бы не­возможным плавное произнесение слов и фраз.

На уровне третичного поля 45 двигательная кора обеспечива­ет способность создавать программы различных видов деятель­ности. За счет этой области происходит оперирование типовыми программами освоенных действий, в том числе и речевых, на­пример, синтаксическими моделями предложений.

Ниже приведена таблица номеров полей мозга различных уровней (по Бродману)

Таблица 2


^ Мо даль­ности

Слуховая

Зрительная

Тактильная

«Двигательная»

Тип по­ля коры

I

II

III

I

II

III

I

II

III

I

II

III

По­ля


41,

22.

21,

17.

18,

-

3

2,1,

39,

10,

11,47.


6,8.

45.