Внутренняя среда организма - это кровь, лимфа и жидкость, заполняющая промежутки между клетками и тканями. Кровеносные и лимфатические сосуды, пронизывающие все органы человека, имеют в своих стенках мельчайшие поры, через которые могут проникать даже некоторые клетки крови. Вода, составляющая основу всех жидкостей в организме, вместе с растворенными в ней органическими и неорганическими веществами легко проходит через стенки сосудов. Вследствие этого химический состав плазмы крови (то есть жидкой части крови, не содержащей клеток), лимфы и тканевой жидкости во многом одинаков. С возрастом существенных изменений химического состава этих жидкостей не происходит. В то же время различия в составе указанных жидкостей могут быть связаны с деятельностью тех органов, в которых эти жидкости находятся.

Кровь

Состав крови. Кровь - это красная непрозрачная жидкость, состоящая из двух фракций - жидкой, или плазмы, и твердой, или клеток - форменных элементов крови. Разделить кровь на эти две фракции довольно легко с помощью центрифуги: клетки тяжелее плазмы и в центрифужной пробирке они собираются на дне в виде красного сгустка, а над ним остается слой прозрачной и почти бесцветной жидкости. Это и есть плазма.

Плазма. В организме взрослого человека содержится около 3 л плазмы. У взрослого здорового человека плазма составляет свыше половины (55 %) объема крови, у детей - несколько меньше.

Более 90 % состава плазмы - вода, остальное - растворенные в ней неорганические соли, а также органические вещества: углеводы, карбоновые, жирные кислоты и аминокислоты, глицерин, растворимые белки и полипептиды, мочевина и т.п. Все вместе они определяют осмотическое давление крови, которое в организме поддерживается на постоянном уровне, чтобы не причинить вреда клеткам самой крови, а также всем остальным клеткам организма: увеличенное осмотическое давление приводит к съеживанию клеток, а при пониженном осмотическом давлении они разбухают. В обоих случаях клетки могут погибнуть. Поэтому для введения разнообразных лекарств в организм и для переливания замещающих кровь жидкостей в случае большой кровопотери, используют специальные растворы, имеющие точно такое же осмотическое давление, как и кровь (изотонические). Такие растворы называются физиологическими. Простейшим по составу физиологическим раствором является 0,1 % раствор поваренной соли NaCl (1 г соли на литр воды). Плазма участвует в осуществлении транспортной функции крови (переносит растворенные в ней вещества), а также защитной функции, поскольку некоторые белки, растворенные в плазме, обладают противомикробным действием.

Клетки крови. В крови встречаются клетки трех основных типов: красные кровяные клетки, или эритроциты, белые кровяные клетки, или лейкоциты ; кровяные пластинки, или тромбоциты . Клетки каждого из этих типов выполняют определенные физиологические функции, а все вместе они определяют физиологические свойства крови. Все клетки крови - короткоживущие (средний срок жизни 2 - 3 нед.), поэтому в течение всей жизни специальные кроветворные органы занимаются производством все новых и новых клеток крови. Кроветворение происходит в печени, селезенке и костном мозге, а также в лимфатических железах.

Эритроциты (рис. 11) - это безъядерные дисковидные клетки, лишенные митохондрий и некоторых других органелл и приспособленные для одной главной функции - быть переносчиками кислорода. Красный цвет эритроцитов определяется тем, что они несут в себе белок гемоглобин (рис. 12), в котором функциональный центр, так называемый гем, содержит атом железа в форме двухвалентного иона. Гем способен химически соединяться с молекулой кислорода (образующееся вещество называется оксигемоглобином) в том случае, если парциальное давление кислорода велико. Эта связь непрочная и легко разрушается, если парциальное Давление кислорода падает. Именно на этом свойстве и основана способность эритроцитов переносить кислород. Попадая в легкие, кровь в легочных пузырьках оказывается в условиях повышенного напряжения кислорода, и гемоглобин активно захватывает атомы этого плохо растворимого в воде газа. Но как только кровь попадает в работающие ткани, которые активно используют кислород, оксигемоглобин легко отдает его, подчиняясь «кислородному запросу» тканей. Во время активного функционирования ткани вырабатывают углекислый газ и другие кислые продукты, которые выходят через клеточные стенки в кровь. Это в еще большей степени стимулирует оксигемоглобин отдавать кислород, поскольку химическая связь тема и кислорода очень чувствительна к кислотности среды. Взамен гем присоединяет к себе молекулу СО 2 , унося ее к легким, где эта химическая связь также разрушается, СО 2 выносится с током выдыхаемого воздуха наружу, а гемоглобин освобождается и вновь готов присоединять к себе кислород.

Рис. 10. Эритроциты: a - нормальные эритроциты в форме двояковогнутого диска; б - сморщенные эритроциты в гипертоническом солевом растворе

Если во вдыхаемом воздухе оказывается угарный газ СО, то он вступает с гемоглобином крови в химическое взаимодействие, в результате которого образуется прочное вещество метоксигемоглобин, не распадающееся в легких. Тем самым гемоглобин крови выводится из процесса переноса кислорода, ткани не получают нужного количества кислорода, и человек ощущает удушье. В этом заключается механизм отравления человека на пожаре. Сходное действие оказывают некоторые другие мгновенные яды, которые также выводят из строя молекулы гемоглобина, например синильная кислота и ее соли (цианиды).

Рис. 11. Пространственная модель молекулы гемоглобина

В каждых 100 мл крови содержится около 12 г гемоглобина. Каждая молекула гемоглобина способна «тащить» на себе 4 атома кислорода. В крови взрослого человека содержится огромное количество эритроцитов - до 5 миллионов в одном миллилитре. У новорожденных детей их еще больше - до 7 миллионов, соответственно больше и гемоглобина. Если человек долгое время живет в условиях недостатка кислорода (например, высоко в горах), то количество эритроцитов в его крови еще более увеличивается. По мере взросления организма количество эритроцитов волнообразно изменяется, но в целом у детей их несколько больше, чем у взрослых. Снижение количества эритроцитов и гемоглобина в крови ниже нормы свидетельствует о тяжелом заболевании - анемии (малокровии). Одной из причин анемии может быть недостаток железа в пище. Железом богаты такие продукты, как говяжья печень, яблоки и некоторые другие. В случаях длительной анемии необходимо принимать лекарственные препараты, содержащие соли железа.

Наряду с определением уровня гемоглобина в крови к наиболее распространенным клиническим анализам крови относится измерение скорости оседания эритроцитов (СОЭ), или реакции оседания эритроцитов (РОЭ), - это два равноправных названия одного и того же теста. Если предотвратить свертывание крови и оставить ее в пробирке или капилляре на несколько часов, то без механического встряхивания тяжелые эритроциты начнут осаждаться. Скорость этого процесса у взрослых составляет от 1 до 15 мм/ч. Если этот показатель существенно выше нормы, это свидетельствует о наличии заболевания, чаще всего воспалительного. У новорожденных СОЭ составляет 1-2 мм/ч. К 3-летнему возрасту СОЭ начинает колебаться - от 2 до 17 мм/ч. В период от 7 до 12 лет СОЭ обычно не превышает 12 мм/ч.

Лейкоциты - белые кровяные клетки. Они не содержат гемоглобина, поэтому не имеют красной окраски. Главная функция лейкоцитов - защита организма от проникших внутрь него болезнетворных микроорганизмов и ядовитых веществ. Лейкоциты способны передвигаться с помощью псевдоподий, как амебы. Так они могут выходить из кровеносных капилляров и лимфатических сосудов, в которых их также очень много, и передвигаться в сторону скопления патогенных микробов. Там они пожирают микробы, осуществляя так называемый фагоцитоз.

Существует множество типов лейкоцитов, но наиболее типичными являются лимфоциты, моноциты и нейтрофилы. Более всего активны в процессах фагоцитоза нейтрофилы, которые образуются, как и эритроциты, в красном костном мозге. Каждый нейтрофил может поглотить 20-30 микробов. Если в организм вторгается крупное инородное тело (например, заноза), то множество нейтрофилов облепляют его, формируя своеобразный барьер. Моноциты - клетки, образующиеся в селезенке и печени, также участвуют в процессах фагоцитоза. Лимфоциты, которые образуются главным образом в лимфатических узлах, не способны к фагоцитозу, но активно участвуют в других иммунных реакциях.

В 1 мл крови содержится в норме от 4 до 9 миллионов лейкоцитов. Соотношение между числом лимфоцитов, моноцитов и нейтрофилов называется формулой крови. Если человек заболевает, то общее число лейкоцитов резко увеличивается, меняется также и формула крови. По ее изменению врачи могут определить, с каким видом микроба борется организм.

У новорожденного ребенка количество белых клеток крови значительно (в 2-5 раз) больше, чем у взрослого, но уже через несколько дней оно снижается до уровня 10-12 миллионов на 1 мл. Начиная со 2-го года жизни эта величина продолжает снижаться и достигает типичных для взрослого величин после полового созревания. У детей очень активно идут процессы образования новых клеток крови, поэтому среди лейкоцитов крови у детей значительно больше молодых клеток, чем у взрослых. Молодые клетки отличаются по своему строению и функциональной активности от зрелых. После 15-16 лет формула крови приобретает свойственные взрослым параметры.

Тромбоциты - самые мелкие форменные элементы крови, количество которых достигает 200-400 миллионов в 1 мл. Мышечная работа и другие виды стресса способны в несколько раз увеличить число тромбоцитов в крови (в этом, в частности, заключена опасность стрессов для пожилых людей: ведь именно от тромбоцитов зависит свертываемость крови, в том числе образование тромбов и закупорка мелких сосудов головного мозга и сердечной мышцы). Место образования тромбоцитов - красный костный мозг и селезенка. Основная их функция - обеспечение свертывания крови. Без этой функции организм становится уязвимым при малейшем ранении, причем опасность заключается не только в том, что теряется значительное количество крови, но и в том, что любая открытая рана - это ворота для инфекции.

Если человек поранился, даже неглубоко, то при этом повредились капилляры, и тромбоциты вместе с кровью оказались на поверхности. Здесь на них действуют два важнейших фактора - низкая температура (гораздо ниже, чем 37 °С внутри тела) и обилие кислорода. Оба эти фактора приводят к разрушению тромбоцитов, и из них выделяются в плазму вещества, которые необходимы для формирования кровяного сгустка - тромба. Для того чтобы образовался тромб, кровь надо остановить, пережав крупный сосуд, если из него сильно льется кровь, поскольку даже начавшийся процесс образования тромба не пройдет до конца, если в ранку будут все время поступать новые и новые порции крови с высокой температурой и еще не разрушившимися тромбоцитами.

Чтобы кровь не свертывалась внутри сосудов, в ней присутствуют специальные противосвертывающие вещества - гепарин и др. Пока сосуды не повреждены, между веществами, стимулирующими и тормозящими свертывание, наблюдается баланс. Повреждение сосудов ведет к нарушению этого баланса. В старости и с увеличением заболеваний этот баланс у человека также нарушается, что увеличивает риск свертывания крови в мелких сосудах и образования опасного для жизни тромба.

Возрастные изменения функции тромбоцитов и свертывания крови были детально изучены А. А. Маркосяном, одним из основоположников возрастной физиологии в России. Было установлено, что у детей свертывание протекает медленнее, чем у взрослых, а образующийся сгусток имеет более рыхлую структуру. Эти исследования привели к формированию концепции биологической надежности и ее повышения в онтогенезе.

Внутренняя среда организма состоит из трёх компонентов, объединённых в единую систему:

1) Кровь

2) Тканевая жидкость

3) Лимфа

Кровь — циркулирует по замкнутой системе сосудов и непосредственно с другими тканями тела не сообщается.

Кровь состоит из жидкой части — плазмы, выполняющей роль межклеточного вещества, и форменных элементов: клеток — эритроцитов и лейкоцитов и кровяных пластинок — тромбоцитов, относящихся к неклеточным форменным элементам крови.

В капиллярах — тончайших кровеносных сосудах, где происходит обмен между кровью и клетками тканей, жидкая часть крови частично покидает кровеносные сосуды. Она переходит в межклеточные промежутки и становится тканевой жидкостью.

Тканевая жидкость является вторым компонентом внутренней среды, в которой непосредственно находятся клетки. В ней около 95% воды, 0,9% минеральных солей, 1,5% белков и других органических веществ, а также кислород и углекислый газ.

Из тканевой жидкости клетки получают питательные вещества и кислород, принесённые кровью. В тканевую жидкость клетки выделяют продукты распада. И лишь оттуда они поступают в кровь и уносятся ею.

Лимфа является третьим компонентом внутренней среды. Она перемещается по лимфатическим сосудам. Лимфатические сосуды начинаются в тканях мелкими слепыми мешочками, состоящими из эпителиального слоя клеток. Это лимфатические капилляры. Они интенсивно поглощают избытки тканевой жидкости.

Лимфатические сосуды сливаются друг с другом и в конечном итоге образуют главный лимфатический сосуд (проток), через который лимфа попадает в кровеносную систему.

На пути лимфы находятся лимфатические узлы, они являются фильтрами, где задерживаются посторонние частицы и уничтожаются микроорганизмы.

ОТНОСИТЕЛЬНОЕ ПОСТОЯНСТВО ВНУТРЕННЕЙ СРЕДЫ

Внутренняя среда организма находится в подвижном равновесии, поскольку одни вещества расходуются, и этот расход восполняется. Так, на смену использованным питательным веществам поступают новые питательные вещества из кишечника.

В стенках кровеносных сосудов есть рецепторы, которые сигнализируют о превышении или снижении концентрации каких-либо веществ в крови. Если концентрация этих веществ приближается к верхней границе нормы, действуют рефлексы, которые снижают их концентрацию. А если она опускается ниже нормы, возбуждаются другие рецепторы, которые вызывают противоположные рефлексы.

Благодаря работе нервной и эндокринной систем колебания концентрации веществ, находящихся в крови, тканевой жидкости и лимфе, не выходят за пределы нормы.

СОСТАВ КРОВИ

Плазма крови имеет относительно постоянный солевой состав. Около 0,9% плазмы приходится на поваренную соль (хлористый натрий), есть в ней и соли калия, кальция, фосфорной кислоты. Около 7% плазмы составляют белки. Среди них белок фибриноген, который принимает участие в свёртывании крови. В плазме крови есть углекислый газ, глюкоза, а также другие питательные вещества и продукты распада.

Эритроциты — красные кровяные клетки, транспортирующие кислород к тканям и углекислый газ к лёгким. Имеют красный цвет, благодаря особому веществу — гемоглобин, который и окрашивает эти клетки в красный цвет.

Лейкоциты — называют белыми кровяными клетками, хотя на самом деле они бесцветные.

Основная функция лейкоцитов — распознавание и уничтожение чужеродных соединений и клеток, которые оказываются во внутренней среде организма. Обнаружив чужеродное тело, они ложноножками захватывают его, поглощают и уничтожают. Это явление было названо фагоцитозом, а сами лейкоциты фагоцитами,что означает «клетки — пожиратели».

Большая группа клеток крови называется лимфоцитами , поскольку их созревание завершается в лимфатических узлах и вилочковой железе (тимусе). Эти клетки способны опознавать химическую структуру чужеродных соединений антигенов и вырабатывать особые химические вещества-антитела, которые нейтрализуют или уничтожают эти антигены.

Способностью к фагоцитозу обладают не только лейкоциты крови, но и находящиеся в тканях более крупные клетки — макрофаги . При проникновении микроорганизмов через кожу и слизистые во внутреннюю среду организма макрофаги перемещаются к ним и участвуют в их уничтожении.

Тромбоциты , или кровяные пластинки, принимают участие в свёртывании крови. Если происходит травма и кровь выходит из сосуда, тромбоциты слипаются и разрушаются. При этом они выделяют ферменты, которые вызывают целую цепочку химических реакций, ведущих к свёртыванию крови. Свёртывание крови возможно потому, что образуется сетка, в которой задерживаются клетки крови. Этот кровяной сгусток, закрывающий рану, и останавливает кровотечение.

Для образования сгустка необходимо, чтобы в крови были соли кальция, витамин К и некоторые другие вещества. Если соли кальция удалены или в крови нет витамина К, кровь свёртываться не будет.

Анализ крови. Состав крови является важной характеристикой состояния организма, поэтому анализ крови — одно из наиболее часто проводимых исследований. При анализе крови определяют количество клеток крови, содержание гемоглобина, концентрацию сахара и других веществ, а также скорость оседания эритроцитов (СОЭ). При наличии какого-нибудь воспалительного процесса СОЭ увеличивается.

Кроветворение. Эритроциты, лейкоциты и тромбоциты образуются в красном костном мозге. Однако дозревание многих лимфоцитов происходит в тимусе (вилочковой железе) и лимфатических узлах. Эти лимфоциты попадают в кровь вместе с лимфой.

Кроветворение — очень интенсивный процесс, так как продолжительность жизни форменных элементов крови небольшая. Лейкоциты живут от нескольких часов до 3-5 суток, эритроциты — 120-130 суток, тромбоциты — 5-7 суток.

НАША ВНУТРЕННЯЯ СРЕДА ЛЮБИТ:

  1. Полноценное питание. Наша внутренняя среда любит полноценное питание: белки, жиры и углеводы богатые витаминами, макро-и микро-элементами.
  2. Достаточное потребление жидкости. Как вы сами понимаете, кровь, лимфа и межклеточная жидкость состоят на 98% из воды, поэтому пейте достаточно жидкости, а точнее — простую воду.
  3. Правильное чередование труда и отдыха. Правильно чередуйте свой отдых и работу. Умеренно работайте и достаточно отдыхайте, чтобы организм мог восстановиться после физических и умственных нагрузок.
  4. Подвижный образ жизни. Нашему организму просто необходим подвижный образ жизни, иначе начнёт страдать, как лимфатическая система, так и кровеносная.

НАША ВНУТРЕННЯЯ СРЕДА НЕ ЛЮБИТ:

  1. Скудное питание. Однообразное, обеднённое питание прямым образом отражается на состоянии лимфы и составе крови.
  2. Недостаточное потребление жидкости делает кровь и лимфу густой, а это прямой путь к проблемам в здоровье.
  3. Малоподвижный образ жизни. Недостаток двигательной активности сказывается не самым лучшим образом на состоянии крови и лимфы.
  4. Болезни. Такие заболевания, как диабет, малокровие и прочие, сказываются не только на лимфатической и сердечно-со судистой системах, но и на здоровье всего организма.


Кровь, тканевая жидкость, лимфа и их функции. Иммунитет

Кровь, лимфа и тканевая жидкость образуют внутреннюю среду орга­низма, которая окружает все его клетки. Химический состав и фи­зико-химические свойства внутрен­ней среды относительно постоян­ны, поэтому клетки организма су­ществуют в относительно стабиль­ных условиях и мало подвержены воздействию факторов внешней среды. Обеспечение постоянства внутренней среды достигается не­прерывной и согласованной рабо­той многих органов (сердца, пище­варительной, дыхательной, выде­лительной систем), которые по­ставляют организму необходимые для жизни вещества и удаляют из него продукты распада. Регулятор-ную функцию по поддержанию постоянства параметров внутрен­ней среды организма - гомеоста-за - осуществляют нервная и эн­докринная системы.

Между тремя составляющими внутреннюю среду организма суще­ствует тесная взаимосвязь. Так, бес­цветная и полупрозрачная ткане­вая жидкость образуется из жид­кой части крови - плазмы, прони­кающей через стенки капилляров в межклеточное пространство, и из продуктов жизнедеятельности, по­ступающих из клеток (рис. 4.13). У взрослого человека ее объем дос­тигает 20 л в сутки. Кровь в ткане­вую жидкость поставляет необхо­димые клеткам растворенные пита­тельные вещества, кислород, гормо­ны и поглощает продукты жизнедеятельности клеток - углекислый газ, мочевину и др.

Меньшая часть тканевой жидко­сти, не успевая возвратиться в кро­вяное русло, поступает в слепо зам­кнутые капилляры лимфатических сосудов, образуя лимфу. На вид - это полупрозрачная жидкость жел­товатого цвета. Состав лимфы бли­зок к составу плазмы крови. Одна­ко белка в ней содержится в 3-4 раза меньше, чем в плазме, но боль­ше, чем в тканевой жидкости. В лимфе имеется небольшое количе­ство лейкоцитов. Мелкие лимфати­ческие сосуды, сливаясь, образуют более крупные. В них имеются по­лулунные клапаны, обеспечиваю­щие ток лимфы в одном направле­нии - к грудному и правому лим­фатическому протокам, впадающим

в верхнюю полую вену. В многочис­ленных лимфатических узлах, че­рез которые протекает лимфа, она обезвреживается за счет деятельно­сти лейкоцитов и в кровь поступает очищенной. Движение лимфы мед­ленное, около 0,2-0,3 мм в мину­ту. Происходит оно главным обра­зом за счет сокращений скелетных мышц, присасывающего действия грудной клетки при вдохе и в мень­шей степени за счет сокращений мышц собственных стенок лимфа­тических сосудов. За сутки в кровь возвращается около 2 л лимфы. При патологических явлениях, наруша­ющих отток лимфы, наблюдается отек тканей.

Кровь - третья составляющая внутренней среды организма. Это ярко-красная жидкость, непрерывно циркулирующая в замкнутой системе кровеносных сосудов чело­века и составляющая около 6-8% от общей массы тела. Жидкая часть крови - плазма - составляет око­ло 55%, остальная часть приходит­ся на форменные элементы - клет­ки крови.

В плазме около 90-91% воды, 7-8% белков, 0,5% липидов, 0,12% моносахаридов и 0,9% ми­неральных солей. Именно плазма осуществляет перенос различных веществ и клеток крови.

Белки плазмы фибриноген и протромбин принимают участие в свертывании крови, глобулины иг­рают важную роль в иммунных ре­акциях организма, альбумины при­дают крови вязкость и связывают присутствующий в крови кальций.

Среди клеток крови больше всего эритроцитов - красных кровяных клеток. Это мелкие дво­яковогнутые диски, лишенные ядра. Их диаметр примерно равен диаметру самых узких капилля­ров. В эритроцитах присутствует гемоглобин, который легко связы­вается с кислородом в участках, где его концентрация высока (легкие), и так же легко отдает его в местах с низкой концентрацией кислоро­да (ткани).

Лейкоциты - белые ядерные клетки крови - по размеру чуть больше эритроцитов, но в крови их содержится значительно меньше. Они играют важную роль в защите организма от болезней. Благодаря своей способности к амебоидному движению они могут проходить сквозь небольшие поры в стенках капилляров в местах, где имеются болезнетворные бактерии, и погло­щать их путем фагоцитоза. Другие

типы лейкоцитов способны выраба­тывать защитные белки - анти­тела - в ответ на попадание в орга­низм чужеродного белка.

Тромбоциты (кровяные плас­тинки) - самые мелкие из клеток крови. В тромбоцитах содержатся вещества, которые играют важную роль в свертывании крови.

Одна из важнейших защитных функций крови - защитная - осуществляется с участием трех механизмов:

а) свертывания крови, благода­ря которому предотвращаются кро-вопотери при травмах кровеносных сосудов;

б) фагоцитоза, осуществляемо­го лейкоцитами, способными к аме­боидному движению и фагоцитозу;

в) иммунной защиты, осуще­ствляемой антителами.

Свертывание крови - слож­ный ферментативный процесс, зак­лючающийся в переходе раствори­мого белка плазмы крови фибрино­гена в нерастворимый белок фиб­рин, образующий основу кровяно­го сгустка - тромба. Процесс свер­тывания крови запускается выхо­дом из разрушенных во время трав­мы тромбоцитов активного фермен­та тромбопластина, который в присутствии ионов кальция и ви­тамина К через ряд промежуточных веществ приводит к образованию нитевидных белковых молекул фибрина. В сети, образованной во­локнами фибрина, задерживаются эритроциты и в результате образу­ется кровяной сгусток. Подсыхая и сжимаясь, он преобразуется в ко­рочку, препятствующую потере крови.

Фагоцитоз осуществляется не­которыми типами лейкоцитов, способными передвигаться с помощью ложноножек в места повреждения клеток и тканей организма, где об­наруживаются микроорганизмы. Приблизившись и затем прижав­шись к микробу, лейкоцит погло­щает его внутрь клетки, где под влиянием ферментов лизосом пере­варивает.

Иммунная защита осуществля­ется благодаря способности защит­ных белков - антител - распоз­навать проникший в организм чу­жеродный материал и индуцировать важнейшие иммунофизиологичес-кие механизмы, направленные на его обезвреживание. Чужеродным материалом могут быть молекулы белков на поверхности клеток мик­роорганизмов либо посторонние клетки, ткани, хирургически пере­саживаемые органы или изменив­шиеся клетки собственного организ­ма (например, раковые).

По происхождению различают врожденный и приобретенный им­мунитет.

Врожденный (наследствен­ный, или видовой) иммунитет пре­допределен генетически и обуслов­лен биологическими, наследствен­но закрепленными особенностями. Этот иммунитет передается по на­следству и характеризуется невос­приимчивостью одного вида живот­ных и человека к патогенным аген­там, вызывающим заболевания у других видов.

Приобретенный иммунитет бывает естественным и искусствен­ным. Естественный иммунитет представляет собой невосприимчи­вость к тому или иному заболева­нию, полученную организмом ре­бенка в результате проникновения антител матери в организм плода

через плаценту (плацентар­ный иммунитет), либо приобре­тенную в результате перенесенного заболевания (постинфекци­онный иммунитет).

Искусственный иммунитет мо­жет, быть активным и пассивным. Активный искусственный им­мунитет вырабатывается в организ­ме после введения вакцины - пре­парата, содержащего ослабленных или убитых возбудителей той или иной болезни. Такой иммунитет менее длительный, чем постинфек­ционный и, как правило, для его поддержания через несколько лет необходимо проводить повторную вакцинацию. В медицинской прак­тике широко пользуются пассив­ной иммунизацией, когда забо­левшему человеку вводят лечебные сыворотки с уже содержащимися в них готовыми антителами против этого возбудителя заболевания. Та­кой иммунитет будет сохраняться до тех пор, пока не погибнут антитела (1-2 месяца).

Кровь, тканеная жидкость и лимфа - внутренняя среда орга­низма Для лее характерно отно­сительное постоянство химическо­го сост ава и физико-химических свойств, что достигается непрерывной и согласованной работой многих органов. Обмен веществ между кровью и клетками происходит через тканевую жидкость.

Защитная: функция крови осуществляется благодаря свертыванию, фагоцитозу и иммунной з ащите. Различают врожденный и приобретенный иммунитет. При -обретенный иммунитет может быть естественным и искусствен­ным.

I. Какова взаимосвязь между элементами внутренней среды организма человека? 2. Какова роль плазмы крови? 3. В чем выражается связь строения эритро-

цитов с выполняемыми ими функциями? 4. Как осуществляется защитная функция

5. Дайте обоснование понятиям: наследственный, естественный и искусственный, активный и пассивный иммунитет.

Организм любого животного устроен чрезвычайно сложно. Это необходимо для поддержки гомеостаза, то есть постоянства. У некоторых состояние условно постоянно, а у других, более развитых, наблюдается фактическое постоянство. Это значит, что как бы ни менялись окружающие условия, организм сохраняет стабильное состояние внутренней среды. Несмотря на то что организмы еще не полностью адаптировались под условия проживания на планете, внутренняя среда организма играет важнейшую роль в их жизнедеятельности.

Понятие внутренней среды

Внутренней средой называется комплекс структурно обособленных участков тела, ни при каких обстоятельствах, кроме механических повреждений, не соприкасающихся с окружающим миром. У организма человека внутренняя среда представлена кровью, межтканевой и синовиальной жидкостью, ликвором и лимфой. Эти 5 видов жидкостей в комплексе и есть внутренняя среда организма. Таковой они называются по трем причинам:

  • во-первых, они не соприкасаются с внешней средой;
  • во-вторых, эти жидкости поддерживают гомеостаз;
  • в-третьих, среда является посредником между клетками и наружными участками тела, защищая от внешних неблагоприятных факторов.

Значение внутренней среды для организма

Внутреннюю среду организма составляют 5 видов жидкостей, главной задачей которых является поддержания постоянного уровня концентраций питательных веществ рядом с клетками, поддержка одинаковой кислотности и температуры. За счет этих факторов удается обеспечить работу клеток, важнее которых в организме ничего нет, поскольку они составляют ткани и органы. Потому внутренняя среда организма - это наиболее широкая транспортная система и область протекания внеклеточных реакций.

Она перемещает питательные вещества и переносит продукты метаболизма к месту разрушения или выведения. Также внутренняя среда организма переносит гормоны и медиаторы, позволяя одним клеткам регулировать работу других. Это основа гуморальных механизмов, обеспечивающих протекание биохимических процессов, суммарный результат которых - это гомеостаз.

Выходит, что вся внутренняя среда организма (ВСО) - это место, куда должны попасть все питательные и биологически активные вещества. Это участок тела, который не должен накапливать продукты метаболизма. А в базовом понимании ВСО является так называемой дорогой, по которой "курьеры" (тканевая и синовиальная жидкость, кровь, лимфа и ликвор) доставляют "пищу" и "строительный материал" и отводят вредные метаболические продукты.

Ранняя внутренняя среда организмов

Все представители царства животных развивались от одноклеточных организмов. У них единственной составляющие внутренней среды организма была цитоплазма. От внешней среды она ограничивалась клеточной стенкой и цитоплазматической оболочкой. Затем дальнейшее развитие животных шло по принципу многоклеточности. У кишечнополостных организмов существовала полость, разделяющая клетки и внешнюю среду. Она была заполнена гидролимфой, в которой транспортировались питательные вещества и продукты клеточного метаболизма. Такой тип внутренней среды имелся у плоских червей и кишечнополостных.

Развитие внутренней среды

У животных классов круглых червей, членистоногих, моллюсков (за исключением головоногих) и насекомых внутреннюю среду организма составляют другие структуры. Это сосуды и участки незамкнутого русла, по которым протекает гемолимфа. Ее главной особенностью является приобретение способности транспортировать кислород посредством гемоглобина или гемоцианина. В целом, такая внутренняя среда далека от совершенства, потому она развивалась дальше.

Совершенная внутренняя среда

Совершенной внутренней средой является замкнутая система, которая исключает возможность циркуляции жидкости по изолированным участкам тела. Таким образом устроены тела представителей классов позвоночных, кольчатых червей и головоногих моллюсков. Причем наиболее совершенной она является у млекопитающих и птиц, у которых для поддержки гомеостаза имеется еще и 4-камерное сердце, обеспечившее им теплокровность.

Составляющие внутренней среды организма таковы: кровь, лимфа, суставная и тканевая жидкость, ликвор. У нее есть свои стенки: эндотелий артерий, вен и капилляров, лимфатических сосудов, суставная капсула и эпендимоциты. По другую сторону внутренней среды лежат цитоплазматические мембраны клеток, с которыми контактирует межклеточная жидкость, также включенная во ВСО.


Кровь

Отчасти внутренняя среда организма образована кровью. Это жидкость, которая содержит форменные элементы, белки и некоторые элементарные вещества. Здесь протекает масса ферментативных процессов. Но главной функцией крови является транспорт, в особенности кислорода к клеткам и углекислоты от них. Потому в крови наибольшую долю имеют форменные элементы: эритроциты, тромбоциты, лейкоциты. Первые заняты в транспортировке кислорода и углекислоты, хотя они же способны играть важную роль в иммунных реакциях за счет активных кислородных форм.

Лейкоциты в крови и вовсе заняты только иммунными реакциями. Они участвуют в иммунном ответе, регулируют его силу и полноту, а также хранят информацию об антигенах, с которыми они контактировали ранее. Поскольку отчасти внутренняя среда организма образована как раз кровью, которая играет роль барьера между участками тела, контактирующими с внешней средой и клетками, то иммунная функция крови является второй по важности после транспортной. При этом она требует задействовать как форменные элементы, так и плазменные белки.

Третья важная функция крови - это гемостаз. Данное понятие соединяет в себе несколько процессов, которые направлены на сохранение жидкой консистенции крови и на укрытие дефектов сосудистой стенки при их появлении. Система гемостаза гарантирует, что кровь, протекающая по сосудам, будет жидкой, пока не потребуется закрыть повреждение сосуда. Причем внутренняя среда организма человека тогда не пострадает, хотя это требует энергетических расходов и задействования тромбоцитов, эритроцитов и плазменных факторов свертывающей и противосвертывающей системы.

Белки крови

Вторая часть крови - жидкая. Она состоит из воды, в которой равномерно распределены белки, глюкоза, углеводы, липопротеиды, аминокислоты, витамины со своими переносчиками и прочие вещества. Среди белков выделяют высокомолекулярные и низкомолекулярные. Первые представлены альбуминами и глобулинами. Эти белки ответственны за работу иммунной системы, поддержку онкотического давления плазмы, функционирование свертывающей и противосвертывающей системы.


Углеводы, растворенные в крови, выступают как транспортируемые энергоемкие вещества. Это питательный субстрат, который должен попасть в межклеточное пространство, откуда будет захвачен клеткой и переработан (окислен) в ее митохондриях. Клетка получит энергию, необходимую для работы систем, ответственных за синтез белков и выполнение функций, идущих во благо всего организма. При этом аминокислоты, также растворенные в плазме крови, также проникают в клетку и являются субстратом для синтеза белка. Последний является инструментом для реализации клеткой своей наследственной информации.

Роль липопротеидов плазмы крови

Еще одни важным источником энергии, помимо глюкозы, является триглицерид. Это жир, который должен расщепиться и стать энергоносителем для мышечной ткани. Именно она, по большей части, способна перерабатывать жиры. Кстати, они содержат в себе гораздо больше энергии, нежели глюкоза, а потому способны обеспечить сокращение мышц на гораздо более долгий период, нежели глюкоза.

Жиры транспортируются в клетки при помощи мембранных рецепторов. Всасавшиеся в кишечнике молекулы жира сначала соединяются в хиломикроны, а затем поступают в кишечные вены. Оттуда хиломикроны проходят в печень и поступают к легким, где из них образуются липопротеиды низкой плотности. Последние являются транспортными формами, в которых жиры доставляются через кровь в межклеточную жидкость к мышечным саркомерам или гладкомышечным клеткам.

Также кровь и межклеточная жидкость вместе с лимфой, из которых, состоит внутренняя среда организма человека, транспортируют продукты обмена и жиров, и углеводов, и белков. Они частично содержатся в крови, которая несет их к месту фильтрации (почки) или утилизации (печень). Очевидно, что эти биологические жидкости, являющиеся средами и компартментами организма, играют важнейшую роль в жизнедеятельности организма. Но гораздо важнее наличие растворителя, то есть воды. Только благодаря ней вещества могут транспортироваться, а клетки - существовать.

Межклеточная жидкость

Считается, что состав внутренней среды организма примерно постоянен. Любые колебания в концентрации питательных веществ или продуктов метаболизма, изменения температуры или кислотности ведут к нарушениям жизнедеятельности. Иногда они способны приводить к смерти. К слову, именно нарушения кислотности и закисление внутренней среды организма является фундаментальным и наиболее тяжело корригируемым нарушением жизнедеятельности.

Это наблюдается в случаях полиарганной недостаточности, когда развивается острая печеночная и почечная недостаточность. Эти органы призваны утилизировать кислые продукты обмена, и когда данное не происходит, возникает непосредственная угроза жизни пациента. Потому, в действительности, все компоненты внутренней среды организма очень важны. Но гораздо важнее работоспособность органов, которые также зависят от ВСО.


Именно межклеточная жидкость реагирует первой на изменения концентраций пищевых веществ или продуктов метаболизма. Уже потом эта информация попадает в кровь посредством медиаторов, выделяемых клетками. Последние якобы передают сигнал клеткам в других областях тела, призывая их принять меры для исправления возникших нарушений. Пока данная система является самой действенной из числа всех, представленных в биосфере.

Лимфа

Лимфа - это также внутренняя среда организма, функции которой сводятся к распространению лейкоцитов по средам организма и отведение избытка жидкости из межтканевого простанства. Лимфа представляет собой жидкость, содержащая низкомолекулярные и высокомолекулярные белки, а также некоторые питательные вещества.

От межтканевого пространства она отводится посредством мельчайших сосудов, которые собираются и образуют лимфатические узлы. В них активно размножаются лимфоциты, играющие важную роль в реализации иммунных реакций. От лимфатических сосудов она собирается в грудной проток и впадает в левый венозный угол. Здесь жидкость снова возвращается в кровеносное русло.


Синовиальная жидкость и ликвор

Синовиальная жидкость - это вариант межклеточной жидкой фракции. Поскольку в суставную капсулу клетки не могут проникать, то единственным способом питания суставного хряща является именно синовий. Внутренней средой организма являются и все суставные полости, потому как они никак не соединены со структурами, контактирующими с наружной средой.

Также к ВСО относятся и все желудочки мозга вместе с ликвором и подпаутинным пространством. Ликвор уже представляет собой вариант лимфы, поскольку у нервной системы нет собственной лимфатической системы. Посредством ликвора мозг очищается от продуктов метаболизма, но не питается за счет его. Питание мозга осуществляется за счет крови, растворенных в ней продуктов и связанного кислорода.


Посредством гематоэнцефалического барьера они проникают к нейронам и глиальным клеткам, доставляя к ним нужные вещества. Отводятся метаболические продукты посредством ликвора и венозной системы. Причем, вероятно, наиболее важной функцией ликвора является защита мозга и нервной системы от колебаний температуры и от механических повреждений. Поскольку жидкость активно гасит механические воздействия и толчки, это свойство действительно необходимо организму.

Заключение

Внешняя и внутренняя среда организма, несмотря на структурную обособленность друг от друга, неразрывно связаны функциональной связью. А именно, внешняя среда отвечает за поступление веществ во внутреннюю, откуда она выводит наружу метаболические продукты. А внутренняя среда передает питательные вещества к клеткам, отводя от них вредные продукты. Таким образом поддерживается гомеостаз, главная характеристика жизнедеятельности. Это же означает, что отделить внешнюю среду отрагизма от внутренней фактически невозможно.

Внутренняя среда организма

Кровь, лимфа, тканевая, жидкость, образуют внутреннюю среду организма. Из плазмы крови, проникающей через стенки капилляров, формируется тканевая жидкость, которая омывает клетки. Между тканевой жидкостью и клетками постоянно происходит обмен веществ. Кровеносная и лимфатическая системы обеспечивают гуморальную связь между органами, объединяя обменные процессы в общую систему. Относительное постоянство физико-химических свойств внутренней среды способствует существованию клеток организма в довольно неизменных условиях и уменьшает влияние на них внешней среды. Постоянство внутренней среды – гомеостаз – организма поддерживается работой многих систем органов, которые обеспечивают саморегуляцию жизненно важных процессов, взаимосвязь с окружающей средой, поступление необходимых организму веществ и выводят из него продукты распада.

Состав и функции крови.

Кровь выполняет следующие функции: транспортную, распределение теплоты, регуляторную, защитную, участвует в выделении, поддерживает постоянство внутренней среды организма.

В организме взрослого человека содержится около 5 л крови, в среднем 6 – 8% от массы тела (у мужчин в среднем около 5,4л, у женщин – около 4,5л). Потеря 10% крови долпустима, 30% - опасна, а 50% - смертельна. Часть крови (около 40%) не циркулирует по кровеносным сосудам, а находится в так называемом депо крови (в капиллярах и венах печени, селезенке, легких и кожи). Объем циркулирующей крови может меняться за счет изменения объема депонированной крови: во время мышечной работы, при кровопотерях, в условиях пониженного атмосферного давления кровь из депо выбрасывается в кровяное русло. Потеря 1/3 – ½ объема крови может привести к смерти.

Кровь представляет собой непрозрачную красную жидкость состоящую из плазмы (55%) и взвешенных в ней клеток, форменных элементов (45%) – эритроцитов, лейкоцитов и тромбоцитов.

Кровь выполняет следующие функции: транспортную, трофическую (питательную), защитную, гемостатическую (кровоостанавливающую). Кроме того, кровь участвует в сохранении постоянного состава и свойств внутренней среды организма - гомеостаза

Плазма крови

Плазма крови содержит 90 – 92% воды и 8 – 10% неорганических и органических веществ. Неорганические вещества составляют 0,9 – 1,0% (ионы Na, K, Mg, Ca, Cl, P и др). Водный раствор, который по концентрации солей соответствует плазме крови, называют физиологическим раствором. Его можно вводить в организм при недостатке жидкости. Среди органических веществ плазмы 6,5 – 8% составляют белки (альбумины , глобулины, фибриноген), около 2% приходится на низкомолекулярные органические вещества (глюкоза – 0,1%, аминокислоты, мочевина, мочевая кислота, липиды, креатинин). белки наряду с минеральными солями поддерживают кислотно-щелочное равновесие и создают определенное осмотическое давление крови.

Форменные элементы крови

В 1 мм3 крови содержится 4,5 – 5 млн. эритроцитов. Это безъядерные клетки, имеющие форму двояковогнутых дисков диаметром 7 – 8 мкм, толщиной 2 – 2,5 мкм. Такая форма клетки увеличивает поверхность для диффузии дыхательных газов, а также делает эритроциты способными к обратимой деформации при прохождении через узкие изогнутые капилляры. У взрослых людей эритроциты образуются в красном костном мозге губчатого вещества костей и при выходе в кровяное русло теряет ядро. Время циркуляции в крови составляет около 120 суток, после чего они разрушаются в селезенке и печени. Эритроциты способны разрушаться и тканями других органов, о чем свидетельствует исчезновение «синяков» (подкожных кровоизлияний).

В эритроцитах содержится белок – гемоглобин, состоящий из белковой и небелковой частей. Небелковая часть (гем) содержит ион железа. Гемоглобин образует в капиллярах легких непрочное соединение с кислородом – оксигемоглобин. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь (кровь, насыщенная кислородом) имеет ярко-алый цвет. Оксигемоглобин, отдавший кислород в капиллярах тканей, называют восстановленным. Он находится в венозной крови (крови, бедной кислородом), которая имеет более темный цвет, чем артериальная. Кроме того, в венозной крови содержится нестойкое соединение гемоглобина с углекислым газом – карбгемоглобин. Гемоглобин может входить в соединения не только с кислородом и углекислым газом, но и с другими газами, например с угарным газом, образуя прочное соединение карбоксигемоглобин. Отравление угарным газом вызывает удушье. При уменьшении количества гемоглобина в эритроцитах или уменьшении числа эритроцитов в крови возникает анемия .

Лейкоциты (6 – 8 тыс/мм3 крови) – ядерные клетки размером 8 -10 мкм, способные к самостоятельным движениям. Различают несколько типов лейкоцитов: базофилы, эозинофилы, нейтрофилы, моноциты и лимфоциты . Они образуются в красном костном мозге, лимфатических узлах и селезенке, разрушаются в селезенке. Продолжительность жизни большинства лейкоцитов – от нескольких часов до 20 суток, а лимфоцитов – 20 лет и более. При острых инфекционных заболеваниях число лейкоцитов быстро нарастает. Проходя сквозь стенки кровеносных сосудов, нейтрофилы фагоцитируют бактерии и продукты распада тканей и разрушают их своими лизосомными ферментами. Гной состоит главным образом из нейрофилов или их остатков. назвал такие лейкоциты фагоцитами, а само явление поглощения и разрушения лейкоцитами чужеродных тел – фагоцитозом, что является одной из защитных реакций организма.

Увеличение числа эозинофилов наблюдается при аллергических реакциях и глистных инвазиях. Базофилы продуцируют биологически активные вещества – гепарин и гистамин. Гепарин базофилов препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует рассасыванию и заживлению.

Моноциты - самые крупные лейкоциты; способность к фагоцитозу у них наиболее выражена. Они приобретают большое значение при хронических инфекционных заболеваниях.

Различают Т-лимфоциты (образуются в вилочковой железе) и В-лимфоциты (образующиеся в красном костном мозге). Они выполняют специфические функции в реакциях иммунитета. В-лимфоциты образуют антитела , которые разносятся по организму и соединяются с бактериями делая их беззащитными против фагоцитов. Т-лимфоциты выделяют особые вещества вызывающие гибель бактерий или вирусов .

Тромбоциты (250 – 400 тыс./мм3) – мелкие безъядерные клетки; участвуют в процессах свертывания крови.

Свертывание крови

Свертывание крови – важнейший защитный механизм, предохраняющий организм от кровопотерь. Он представляет собой цепь реакций, в результате которых растворенный в цитоплазме фибриноген превращается в нерастворимый фибрин. На этот процесс влияют 13 факторов свертывания крови, но наиболее важны четыре: фибриноген, протромбин, тромбопластин и ионы кальция. Гладкая, несмачиваемая поверхность внутренней стенки сосуда препятствует свертыванию крови. При поражении сосуда разрушаются тромбоциты и тканевые клетки, в результате чего высвобождается неактивный тромбопластин. Под влиянием факторов свертывания крови и кальция образуется активный тромбопластин, при участии которого белок плазмы крови протромбин переходит в тромбин. Тромбин катализирует переход фибриногена в фибрин. Образующийся при этом сгусток, состоящий из нитей фибрина и клеток крови, закупоривает сосуд, что препятствует дальнейшей кровопотере.

Наряду со свертывающей системой существует противосвертывающая система. К ней относится белок фибринолизин, растворяющий в сосудах сгустки фибрина. При нарушении деятельности противосвертывающей системы в сосудах образуется тромб.

Группы крови.

В гг. К. Ландштейнер открыл группы крови. В 1940г. Он открыл еще один фактор крови – резус (Rh –фактор). У 85% людей эритроциты несут на своей поверхности Rh-антиген – это резус положительные, у других он отсутствует – это резус отрицательные. Если человеку Rh - переливают кровь от Rh+ донора, то у первого в течение двух-четырех месяцев будут продуцироваться Rh-антитела, и если ему перелить еще раз Rh+ кровь, то произойдет агглютинация Rh+ эритроцитов.

При переливании небольших доз крови от донора (человека, дающего кровь) реципиенту (принимающему кровь) необходимо учитывать группу крови. Известна система АВО, включающая четыре группы крови. В крови имеются особые белковые вещества: в эритроцитах агглютиногены (А и В), в плазме – агглютинины (α и β). Если агглютинин α встречается с агглютиногеном А или аглютитинин β с – агглютиногеном В, то происходит реакция агглютинации (склеивание эритроцитов). Наличие тех или иных агглютининов и агглютиногенов в крови представлено в таблице.

Название группы

Агглютиногены в эритроцитах

Агглютинины в плазме

При переливании крови учитывают агглютиногены донора и агглютинины реципиента. Агглютинины донора значительно разводятся и теряют способность аглютинировать эритроциты реципиента. Людей с I группой группой крови называют универсальными донорами, так как эту группу можно переливать всем четырем группам. Людей с IV группой называют универсальными реципиентами, так как им можно переливать любую группу крови. Кровь II группы может быть перелита II и IV группам, кровь III группы может быть перелита III и IV группам. При переливании больших доз крови используют только одногруппную кровь. В настоящее время предпочитают переливать одногруппную кровь и в небольших дозах.

Иммунитет

Иммунитет – способ защиты организма от генетически чужеродных веществ и инфекционных агентов. Защитные реакции организма обеспечиваются клетками – фагоцитами, а также белками – антителами. Антитела вырабатывают плазматические клетки, которые образуются из В-лимфоцитов в ответ на появление в организме чужеродных белков – антигенов . Антитела связываются с антигенами, образуя комплекс антиген – антитело, в котором антиген теряет свои патогенные свойства.

Различают естественный иммунитет, выработанный самим организмом без искусственных вмешательств, и искусственный – возникающий при введении в организм специальных веществ. Естественный иммунитет может быть врожденным и приобретенным. В первом случае организм получает иммунные тела от матери через плаценту или с материнским молоком. Во втором случае антитела в организме образуются после перенесенного заболевания.

Искусственный иммунитет может быть активным и пассивным . Активный иммунитет вырабатывается при введении в организм вакцины , содержащей ослабленные или убитые возбудители заболеваний или их токсины. Такой иммунитет сохраняется долго. Принцип создания лечебных вакцин и введение их в медицинскую практику принадлежат французскому ученому Л. Пастеру. Пассивный иммунитет возникает при введении в организм лечебной сыворотки с уже готовыми антителами. Такой иммунитет сохраняется недолго – 4-6 недель. Сыворотку получают из крови животных (чаще всего лошадей), которым вводят постепенно возрастающие дозы микроорганизмов или их токсинов.

Лимфа

Лимфа – бесцветная жидкость; образуется из тканевой жидкости, содержит в 3- 4 раза меньше белков, чем плазма крови; реакция лимфы щелочная. В ней присутствует фибриноген, поэтому она способна свертываться. В лимфе нет эритроцитов, в небольших количествах содержатся лейкоциты, проникающие из кровеносных капилляров в тканевую жидкость. Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обмена веществ (лимфа, оттекающая от печени, имеет наибольшее количество белка, от кишечника – липидов).

Кровообращение.

Благодаря кровообращению кровь осуществляет связь всех органов тела человека и выполняет свойственные ей функции. Движение крови по сосудам обеспечивается органами кровообращения, которые представлены центральным пульсирующим органом – сердцем и сосудами – артериями, капиллярами и венами.

Сердце.

Сердце – это полый четырехкамерный мышечный орган конусовидной формы, массой 300 г (размер его соответствует сжатой в кулак кисти руки). Широкое основание сердца направлено вверх, кзади и вправо, а суженная часть – верхушка – вниз, кпереди и влево. Снаружи сердце покрыто перикардом , имеющим два листка: париетальный и висцеральный. Между листками расположена полость, содержащая небольшое количество жидкости (она уменьшает трение между листками при сокращении сердца). Париетальный листок образует вокруг сердца серозный мешок – околосердечную сумку . Висцеральный листок перикарда является наружной оболочкой сердца – эпикардом. Средняя оболочка – миокард – состоит из поперечно-полосатой мышечной ткани особого строения.

Особенности строения следующие: волокна сердечной мышцы состоят из цепочки одно - и двуядерных клеток – миоцитов, между которыми имеются перегородки; соседние волокна связаны между собой цитоплазматическими мостиками. Межклеточные соединения в сердце не препятствуют проведению возбуждения, благодаря чему мышца сердца подчиняется закону «все или ничего» (на раздражение отвечает либо возбуждением всех волокон, либо не реагирует вовсе; в нервных клетках и скелетных мышцах каждая клетка возбуждается изолированно). Мускулатура в левом желудочке наиболее мощная. Третья, внутренняя, оболочка сердца – эндокард – выстилает полость сердца и образует створки – клапаны.

Сердце делится на правую и левую половины сплошной продольной перегородкой. В правой половине течет венозная кровь, в левой – артериальная. Каждая из половин состоит из двух отделов: предсердия и желудочка, полости которых связаны между собой предсердно-желудочковым отверстием. Отверстие в левой половине закрывается двустворчатым клапаном, а в правой – трехстворчатым. С помощью сухожильных нитей створки связаны с сосочковыми мышцами стенок желудочков, это не позволяет клапанам выворачиваться в сторону предсердий и не допускает обратного тока крови из желудочков в предсердия. Кроме створчатых сердце имеет полулунные клапаны. Они расположены на границе левого желудочка и аорты и правого желудочка и легочного ствола. Эти клапаны открываются в сторону артерий и препятствуют обратному току крови. В правое предсердие поступает венозная кровь от всех органов (кроме легких) по верхней и нижней полым венам и коронарным венам сердца, а в левое предсердие – артериальная кровь по четырем легочным венам.

Сердечная мышца обладает свойством автоматии, т. е. способностью сокращаться под влиянием импульсов, возникающих в самом сердце. Импульсы возбуждения возникают в определенных участках миокарда, образующих проводящую систему сердца (синусный узел, предсердно-желудочковый, пучок Гиса). В правом предсердии (в синусном узле) ритмично возникает возбуждение, которое затем распространяется на волокна всего миокарда. Автоматическое сокращение сердца продолжается и при его изоляции из организма.

Работа сердце заключается в ритмическом нагнетании крови из вен в артерии. Эта функция выполняется благодаря попеременным ритмическим сокращениям и расслаблениям мышечных волокон миокарда. Систола (сокращение) и диастола (расслабление) согласованы и составляют цикл работы сердца. В нем различают три фазы: систола предсердий, систола желудочков, диастола предсердий и желудочков. При частоте сердечных сокращений 75 ударов/мин первая фаза длится 0,1 с, вторая – 0,3, третья – 0,4 с. Во время общей паузы кровь вследствие разности давлений притекает из вен в предсердия, а затем в желудочки. Во время систолы предсердий кровь из предсердий продолжает поступать в желудочки (обратно в вены она попасть не может, так как при этом устья крупных вен сжимаются кольцевыми мышцами миокарда предсердий). В начале систолы желудочков давление в них повышается, створчатые клапаны захлопываются. Когда давление в желудочках становится выше, чем в аорте и легочном стволе, открываются полулунные клапаны и кровь поступает в эти артерии. Во время диастолы желудочков полулунные клапаны захлопываются, так как давление крови в артериях становится выше, чем в желудочках.

В норме частота сердечных сокращений взрослого человека колеблется от 60 до 80 в 1 мин, у спортсменов 40 – 50, у новорожденных 140. При больших физических нагрузках частота сердцебиений увеличивается. Таким образом, она зависит от условий в которых находится организм, а также от возраста человека. Объем крови, выбрасываемый сердцем за одну систолу, называют систолическим объемом . Величина систолического объема зависит от размеров сердца, состоянии миокарда и организма в целом. У взрослого человека он равен 120 – 160 мл, при этом в сосуды из каждого желудочка поступает по 60 – 80 мл. у спортсменов он может увеличиваться до 170 – 190 мл. Минутный объем – количество крови, которое сердце выбрасывает в легочный ствол и аорту за 1 мин, равен 4,5 – 5,0 л. Эти показатели характеризуют функциональное состояние сердечной мышцы.

При работе сердца возникают звуки, называемые тонами сердца. Первый тон (систолический) возникает в начале систолы желудочков и обусловлен сокращением мускулатуры желудочков, а также захлопыванием створчатых клапанов. Второй (диастолический) – высокий и менее продолжительный, чем первый, зависит от замыкания полулунных клапанов. При некоторых заболеваниях характер тонов изменяется, и появляются шумы.

Регуляция сердечной деятельности осуществляется блуждающим (парасимпатическим) нервом, который вызывает урежение ритма и уменьшение силы сердечных сокращений, и симпатическими волокнами, оказывающими ускоряющее и усиливающее действие. Центры, регулирующие деятельность сердца, находятся в продолговатом и спинном мозге. Кроме того, имеются центры регуляции сердечной деятельности в гипоталамусе и коре больших полушарий. Изменение работы сердца происходит рефлекторно в ответ на самые различные раздражения, действующие на организм (теплота, холод, боль, изменения в мышцах во время работы, повышение давления в сосудах и т. д.).

Большую роль в регуляции деятельности сердца играют различные гуморальные влияния. Гормон надпочечников адреналин учащает и усиливает работу сердца, ацетилхолин (медиатор) обладает противоположным эффектом, гормон тироксин учащает сердечный ритм. При резких физических нагрузках или состоянии эмоционального напряжения мозговой слой надпочечников выбрасывает в кровь большие количества адреналина, что приводит к резкому усилению сердечной деятельности.

Сосуды.

Артерии – сосуды, несущие кровь от сердца к органам тканям. Стенка артерии состоит из трех оболочек: наружной (соединительнотканной), средней (гладкомышечной) и внутренней, выстланной изнутри одним слоем плоских клеток (эндотелием). Развитая мышечная оболочка и эластические волокна придают стенкам артерии упругость и прочность. Различают артерии эластического типа (ближайшие к сердцу крупные сосуды), мышечного типа (средние и мелкие артерии, которые оказывают сопротивлению кровотоку и тем самым регулируют приток крови к органу) и артериолы – последние разветвления артерии, переходящие в капилляры

Капилляры – мельчайшие кровеносные сосуды, через стенки которых осуществляются обменные процессы между кровью и тканями. Их стенка состоит из одного слоя клеток эндотелия, расположенного на соединительнотканной пластинке. Диаметр капилляра составляет от 5 до 30 мкм, длина всех капилляров тела человека – около 100 000км. Движение жидкости чрез капиллярную стенку происходит в результате разности гидростатического давления крови и гидростатического давления окружающей ткани, а также под действием разности осмотического давления крови и межклеточной жидкости. В артериальном конце капилляра растворенные в крови вещества фильтруются в тканевую жидкость. В венозном его конце давление крови уменьшается, осмотическое давление белков плазмы способствует поступлению жидкости и продуктов метаболизма обратно в капилляры.

Вены – сосуды, по которым кровь течет от органов к сердцу. Стенки их (как и у артерий) также состоят из трех слоев, но они тоньше и беднее эластическими волокнами. Поэтому вены менее упруги и могут спадаться. Большинство вен снабжено клапанами, которые препятствуют обратному току крови.

Движение крови по сосудам определяется двумя силами: разностью давлений между артериями и венами, которое создается и поддерживается работой сердца, и сопротивлением стенок сосудов току крови. Количество крови, проходящей через орган, зависит от разности давлений в артериях и венах этого органа и сопротивления течению крови в его сосудистой сети. Скорость течения крови обратно пропорциональна суммарной площади поперечного сечения сосудов. Скорость кровотока в аорте составляет 0,5 м/с, в капиллярах – 0,0005, в венах – 0,25м/с. Кровь движется по артериям непрерывно, хотя сердце выбрасывает ее отдельными порциями. Такая непрерывность тока крови обеспечивается эластичными стенками крупных артерий, которые во время систолы желудочков, переполняясь кровью, растягиваются, а затем, возвращаясь в исходное состояние (во время диастолы), проталкивают кровь в нижележащие сосуды.

Для движения крови по венам недостаточно одного давления, создаваемо сердцем. Существуют дополнительные факторы: клапаны вен, сокращение близлежащих скелетных мышц, которые сжимают стенки вен, проталкивая кровь к сердцу; присасывающее действие крупных вен при увеличении объема грудной полости и отрицательное давление в ней.

Величина артериального давления подвергается колебаниям в зависимости от фаз деятельности сердца и дыхания. Различают систолическое давление (отражает состояние миокарда левого желудочка и равно 110 – 120 мм рт. ст.), диастолическое (характеризует тонус стенок артерий – 60 – 80 мм рт. ст.) и пульсовое (разность между систолическим и диастолическим давлением). Значительное повышение артериального давления наблюдается при тяжелой физической нагрузке, понижение – при больших кровопотерях, сильных травмах, отравлениях и др. С возрастом эластичность стенок артерий уменьшается, поэтому давление в них становится выше, причем систолическое давление повышается в большей степени, чем диастолическое.

Кровь перекачивается из области высокого давления в область более низкого давления. В начале кровеносного русла давление в аорте и крупных артериях на 110 – 120 мм рт. ст. превышает атмосферное, в артериях – на 60 – 70, в артериальном и венозном концах капилляра – на 30 и 15 соответственно. В венах конечностей оно равно 5 – 8 мм рт. ст., в крупных венах грудной полости и при впадении их в правое предсердие почти равно атмосферному и зависит от фаз дыхания. Во время вдоха, когда грудная клетка расширяется, давление в венах понижается и становится ниже атмосферного, при выдохе повышается обычно на 2-5 мм рт. ст. Разность давлений в начале и в конце круга кровообращения обеспечивает движение крови по сосудам.

Ритмические колебания стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка, называют артериальным пульсом . Пульс можно обнаружить на ощупь там, где артерии лежат более поверхностно: в области лучевой артерии нижней трети предплечья, в поверхностной височной артерии и тыльной артерии стопы. Определенные характеристики пульса отражают состояние сердечно-сосудистой системы.

Центральная регуляция гемодинамики осуществляется сосудодвигательным центром продолговатого мозга. Импульсы возбуждения передаются на мышечную стенку сосуда через симпатические и парасимпатические нервы. Симпатические нервы оказывают сосудосуживающий эффект (кроме сосудов сердца, головного мозга, легких). Парасимпатические нервы – сосудорасширяющий эффект.

Гуморальная регуляция просвета сосудов обеспечивается рядом веществ: сосудорасширяющих (ацетилхолин, гистамин и др.) и сосудосуживающих (адреналин, вазопрессин, серотонин и др.)

Круги кровообращения.

Кровеносные сосуды тела объединяют в большой и малый круги кровообращения. Сосуды большого круга снабжают кровью органы, сосуды малого круга обеспечивают газообмен в легких.

Большой круг начинается из левого желудочка аортой, от которой отходят правая и левая коронарные артерии сердца, снабжающие кровью различные отделы сердечной мышцы. Коронарные вены от сердечной мышцы несут кровь непосредственно в правое предсердие. Аорта имеет восходящую часть, которая переходит в дугу аорты. От дуги аорты отходят справа налево плечеголовной ствол (делится на правую общую сонную артерию и левую подключичную), левая общая сонная и левая подключичная.

Далее нисходящая часть аорты, переходя в грудную полость, получает название грудной аорты. Она дает ветви к органам грудной полости, а затем, миновав диафрагму, переходит в брюшной отдел. Брюшная аорта направляет ветви к органам брюшной полости и органам таза, потом распадается на правую и левую подвздошные, которые снабжают кровью органы малого таза и нижние конечности.

От верхней части тела и верхних конечностей кровь собирается в верхнюю полую вену. За счет слияния двух общих подвздошных вен образуется нижняя полая вена. Верхняя и нижняя полые вены, собирая кровь от верхней и нижней частей туловища, впадают в правое предсердие. От всех непарных органов брюшной полости (желудочка, тонкой и толстой кишок, поджелудочной железы и селезенки) венозная кровь попадает в непарную воротную вену печени. Воротная вена образует в печени капиллярную сеть (воротную систему), из печени две печеночные вены впадают в нижнюю полую вену.

Малый круг начинается от правого желудочка легочным стволом, который делится на правую и левую легочные артерии, идущие в легкие. Из каждого легкого выходит по две легочные вены, впадающие в левое предсердие.

Лимфообращение.

Лимфатическая система выполняет следующие функции: является дополнительной системой оттока жидкости от органов; выполняет кроветворную и защитную функции (в лимфатических узлах происходит размножение лимфоцитов и фагоцитирование болезнетворных микроорганизмов, а также вырабатываются иммунные тела); участвует в обмене веществ (всасывание продуктов распада жира).

Началом лимфатической системы является замкнутые лимфатические капилляры, в них фильтруется тканевая жидкость, образующая лимфу. Из сетей лимфатических капилляров берут начало более крупные лимфатические сосуды, снабженные клапанами. По лимфатическим сосудам лимфа направляется в грудной лимфатический проток. Она поступает от всех органов, за исключением правой половины головы, правой руки и правой части груди. Из этих участков тела лимфа собирается в правый лимфатических проток. Лимфатические протоки впадают в вены большого круга. По ходу лимфатических сосудов имеются лимфатические узлы. В них лимфа обогащается лейкоцитами, там же задерживаются и обеззараживаются микроорганизмы. При попадании бактерий в лимфатические узлы последние распухают и становятся болезненными .

Факторы движения лимфы по сосудам следующие: а) ритмическое сокращение стенок крупных лимфатических сосудов; Б) наличие клапанов в лимфатических сосудах; В) присасывающее действие расширенного грудного лимфатического протока в момент увеличения объема грудной полости при вдохе и отрицательное давление в грудной полости; г) сокращение скелетных мышц.