Она окружает все клетки организма, через нее происходят реакции обмена веществ в органах и тканях. Кровь (за исключением кроветворных органов) непосредственно не соприкасается с клетками. Из плазмы крови, проникающей сквозь стенки капилляров, образуется тканевая жидкость, окружающая все клетки. Между клетками и тканевой жидкостью постоянно происходит обмен веществами. Часть тканевой жидкости поступает в тонкие слепо замкнутые капилляры лимфатической системы и с этого момента превращается в лимфу.

Так как во внутренней среде организма поддерживается постоянство физических и химических свойств, сохраняющееся даже при очень сильных внешних воздействиях на организм, то и все клетки организма существуют в относительно постоянных условиях. Постоянство внутренней среды организма называется гомеостазом. На постоянном уровне в организме поддерживаются состав и свойства крови и тканевой жидкости; тела; параметры сердечнососудистой деятельности и дыхания и другое. Гомеостаз поддерживается сложнейшей координированной работой нервной и эндокринной систем.

Функции и состав крови: плазма и форменные элементы

У человека кровеносная система замкнутая, и кровь циркулирует по кровеносным сосудам. Кровь выполняет следующие функции:

1) дыхательную - переносит кислород из легких ко всем органам и тканям и выносит углекислый газ из тканей в легкие;

2) питательную - переносит питательные вещества, всосавшиеся в кишечнике, ко всем органам и тканям. Таким образом ткани снабжаются водой, аминокислотами, глюкозой, продуктами распада жиров, минеральными солями, витаминами;

3) выделительную - доставляет конечные продукты обмена веществ (мочевину, соли молочной кислоты, креатинин и др.) из тканей к местам удаления (почкам, потовым железам) или разрушения (печени);

4) терморегуляционную - переносит водой плазмы крови тепло от места его образования (скелетные мышцы, печень) к тепло-потребляющим органам (мозг, кожа и др.). В жару сосуды кожи расширяются для того, чтобы отдавать излишки тепла, и кожа краснеет. В холодную погоду сосуды кожи сокращаются, чтобы в кожу поступало меньше крови и она не отдавала бы тепло. При этом кожа синеет;

5) регуляторную - кровь может удерживать или отдавать воду тканям, регулируя тем самым содержание воды в них. Кровь регулирует также кислотно-щелочное равновесие в тканях. Кроме того, она переносит гормоны и другие физиологически активные вещества от мест их образования к органам, которые они регулируют (органам-мишеням);

6) защитную - содержащиеся в крови вещества защищают организм от потерь крови при разрушении сосудов, образуя тромб. Этим они также препятствуют проникновению в кровь болезнетворных микроорганизмов (бактерий, вирусов, простейших, грибов). Лейкоциты крови защищают организм от токсинов и болезнетворных микроорганизмов путем фагоцитоза и выработки антител.

У взрослого человека масса крови составляет приблизительно 6-8% от массы тела и равняется 5,0-5,5 литров. Часть крови циркулирует по сосудам, а около 40% ее находится в так называемых депо: сосудах кожи, селезенки и печени. При необходимости, например при высоких физических нагрузках, при кровопотерях, кровь из депо включается в циркуляцию и начинает активно выполнять свои функции. Кровь состоит на 55-60% из плазмы и на 40-45% - из форменных элементов.

Плазма - жидкая среда крови, содержащая 90-92% воды и 8-10% различных веществ. Белки плазмы (около 7%) выполняют целый ряд функций. Альбумины - удерживают в плазме воду; глобулины - основа антител; фибриноген - необходим для свертывания крови; разнообразные аминокислоты переносятся плазмой крови от кишечника ко всем тканям; ряд белков выполняет ферментативные функции и т. д. Неорганические соли (около 1%), содержащиеся в плазме, включают в себя NaCl, соли калия, кальция, фосфора, магния и др. Строго определенная концентрация хлорида натрия (0,9%) необходима для создания стабильного осмотического давления. Если поместить красные кровяные тельца - эритроциты - в среду с более низким содержанием NaCl, то они начнут поглощать воду до тех пор, пока не лопнут. При этом образуется очень красивая и яркая «лаковая кровь», не способная выполнять функции нормальной крови. Вот почему при кровопотерях нельзя вводить в кровь воду. Если же эритроциты поместить в раствор, содержащий более 0,9% NaCl, то будет высасываться из эритроцитов и они сморщатся. В этих случаях используют так называемый физиологический раствор, который по концентрации солей, особенно NaCl, строго соответствует плазме крови. Глюкоза содержится в плазме крови в концентрации 0,1%. Это важнейшее питательное вещество для всех тканей организма, но особенно для мозга. Если содержание глюкозы в плазме снижается приблизительно в два раза (до 0,04%), то мозг лишается источника энергии, человек теряет сознание и может быстро погибнуть. Жиров в плазме крови около 0,8%. Главным образом это питательные вещества, переносимые кровью к местам потребления.

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.

Эритроциты - красные кровяные тельца, которые представляют собой безъядерные клетки, имеющие форму двояковогнутого диска диаметром 7 микрон и толщиной 2 микрона. Такая форма обеспечивает эритроцитам наибольшую поверхность при наименьшем объеме и позволяет им проходить через самые мелкие кровеносные капилляры, быстро отдавая тканям кислород. Молодые эритроциты человека имеют ядро, но, созревая, теряют его. Зрелые эритроциты большинства животных имеют ядра. В одном кубическом миллиметре крови содержится около 5,5 миллионов эритроцитов. Основная роль эритроцитов - дыхательная: они доставляют ко всем тканям кислород из легких и выносят из тканей значительное количество углекислого газа. Кислород и СO 2 в эритроцитах связываются дыхательным пигментом - гемоглобином. В каждом эритроците содержится около 270 миллионов молекул гемоглобина. Гемоглобин представляет собой соединение белка - глобина - и четырех небелковых частей - гемов. Каждый гем содержит молекулу двухвалентного железа и может присоединять или отдавать молекулу кислорода. При присоединении к гемоглобину кислорода в капиллярах легких образуется нестойкое соединение - оксигемоглобин. Дойдя до капилляров тканей, эритроциты, содержащие оксигемоглобин, отдают тканям кислород, и образуется так называемый восстановленный гемоглобин, который теперь способен присоединить СO 2 .

Получившееся также нестойкое соединение HbCO 2 попав с током крови в легкие, распадается, и образовавшийся CO 2 удаляется через дыхательные пути. Надо также учитывать, что значительная часть CO 2 выносится из тканей не гемоглобином эритроцитов, а в виде аниона угольной кислоты (HCO 3 —), образующегося при растворении CO 2 в плазме крови. Из этого аниона в легких образуется CO 2 , выдыхаемый наружу. К сожалению, гемоглобин способен образовывать прочное соединение с угарным газом (СО), называемое карбоксигемоглобином. Присутствие во вдыхаемом воздухе всего 0,03% СО приводит к быстрому связыванию молекул гемоглобина, и эритроциты теряют способность переносить кислород. При этом наступает быстрая смерть от удушья.

Эритроциты способны циркулировать по кровяному руслу, выполняя свои функции, около 130 дней. Затем они разрушаются в печени и селезенке, причем небелковая часть гемоглобина - гем - многократно используется в дальнейшем при образовании новых эритроцитов. Новые эритроциты образуются в красном костном мозге губчатого вещества костей.

Лейкоциты - клетки крови, имеющие ядра. Размер лейкоцитов колеблется от 8 до 12 микрон. В одном кубическом миллиметре крови их содержится 6-8 тысяч, но это число может сильно колебаться, возрастая, например, при инфекционных заболеваниях. Такое увеличенное содержание лейкоцитов в крови называют лейкоцитозом. Некоторые лейкоциты способны к самостоятельным амебоидным движениям. Лейкоциты обеспечивают выполнение кровью ее защитных функций.

Различают 5 типов лейкоцитов: нейтрофилы, эозинофилы, базофилы, лимфоциты и моноциты. Больше всего в крови нейтрофилов - до 70% от числа всех лейкоцитов. Нейтрофилы и моноциты, активно двигаясь, опознают чужеродные белки и белковые молекулы, захватывают их и уничтожают. Этот процесс был открыт И. И. Мечниковым и назван им фагоцитозом. Нейтрофилы не только способны к фагоцитозу, но и выделяют вещества, обладающие бактерицидным эффектом, способствуя регенерации тканей, удаляя из них поврежденные и мертвые клетки. Моноциты называются макрофагами, их диаметр достигает 50 микрон. Они участвуют в процессе воспаления и формирования иммунного ответа и не только уничтожают болезнетворные бактерии и простейшие, но также способны разрушать раковые клетки, старые и поврежденные клетки нашего организма.

Лимфоциты играют важнейшую роль в формировании и поддержании иммунного ответа. Они способны опознать чужеродные тела (антигены) по их поверхности и выработать специфические белковые молекулы (антитела), связывающие эти чужеродные агенты. Они способны также запоминать структуру антигенов, так что при повторном внедрении этих агентов в организм иммунный ответ возникает очень быстро, антител образуется больше и заболевание может и не развиться. Первыми реагируют на попадание в кровь антигенов так называемые В-лимфоциты, которые сразу начинают вырабатывать специфические антитела. Часть В-лимфоцитов превращается в В-клетки памяти, которые существуют в крови очень долго и способны к размножению. Они запоминают структуру антигена и хранят эту информацию годами. Другой вид лимфоцитов, Т-лимфоциты, регулирует работу всех других клеток, ответственных за иммунитет. Среди них также есть клетки иммунной памяти. Лейкоциты образуются в красном костном мозге и лимфатических узлах, а разрушаются в селезенке.

Тромбоциты - очень мелкие безъядерные клетки. Число их достигает 200-300 тысяч в одном кубическом миллиметре крови. Они образуются в красном костном мозге, циркулируют в кровяном русле 5-11 дней, а затем разрушаются в печени и селезенке. При повреждении сосуда тромбоциты выделяют вещества, необходимые для свертывания крови, способствуя образованию тромба и прекращению кровотечения.

Группы крови

Проблема переливания крови возникла очень давно. Еще древние греки пытались спасти истекающих кровью раненых воинов, давая им пить теплую кровь животных. Но большой пользы от этого быть не могло. В начале XIX столетия были сделаны первые попытки по переливанию крови непосредственно от одного человека другому, однако при этом наблюдалось очень большое число осложнений: эритроциты после переливания крови склеивались, разрушались, что приводило к гибели человека. В начале XX столетия К. Ландштейнер и Я. Янский создали учение о группах крови, позволяющее безошибочно и безопасно возмещать кровопотерю у одного человека (реципиента) кровью другого(донора).

Выяснилось, что в мембранах эритроцитов содержатся особые вещества, обладающие антигенными свойствами, - агглютиногены. С ними могут реагировать растворенные в плазме специфические антитела, относящиеся к фракции глобулинов, - агглютинины. При реакции антиген - антитело между несколькими эритроцитами образуются мостики, и они слипаются.

Наиболее распространена система подразделения крови на 4 группы. Если агглютинин α после переливания встретится с агглютиногеном А, то произойдет склеивание эритроцитов. То же самое происходит при встрече В и β. В настоящее время показано, что донору можно переливать только кровь его группы, хотя совсем недавно считали, что при небольших объемах переливания агглютинины плазмы донора сильно разводятся и теряют способность склеивать эритроциты реципиента. Людям с I (0) группой крови можно переливать любую кровь, так как их эритроциты не слипаются. Поэтому таких людей называют универсальными донорами. Людям с IV (АВ) группой крови можно переливать небольшие количества любой крови - это универсальные реципиенты. Однако лучше так не делать.

Более 40% европейцев имеют II (А) группу крови, 40% - I (0), 10% - III (В) и 6% - IV (АВ). А вот 90% индейцев Америки имеют I (0) группу крови.

Свертывание крови

Свертывание крови - это важнейшая защитная реакция, предохраняющая организм от кровопотерь. Кровотечение возникает чаще всего при механическом разрушении кровеносных сосудов. Для взрослого мужчины условно смертельной считается кровопотеря объемом приблизительно 1,5-2,0 литра, женщины же могут переносить потерю даже 2,5 литров крови. Для того чтобы избежать кровопотери, кровь в месте повреждения сосуда должна быстро свернуться, образовав тромб. Тромб формируется при полимеризации нерастворимого белка плазмы - фибрина, который, в свою очередь, образуется из растворимого белка плазмы - фибриногена. Процесс свертывания крови очень сложен, включает в себя множество этапов, катализируется многими ферментами. Он контролируется и нервным, и гуморальным путем. Упрощенно процесс свертывания крови можно изобразить следующим образом.

Известны заболевания, при которых в организме не хватает того или иного фактора, необходимого для свертывания крови. Пример такого заболевания - гемофилия. Свертывание также замедляется в том случае, когда в пище не хватает витамина К, необходимого для синтеза некоторых белковых факторов свертывания печенью. Так как образование тромбов в просветах неповрежденных сосудов, приводящее к инсультам и инфарктам, смертельно опасно, то в организме существует особая противосвертывающая система, защищающая организм от тромбозов сосудов.

Лимфа

Избыток тканевой жидкости поступает в слепо замкнутые лимфатические капилляры и превращается в лимфу. По своему составу лимфа похожа на плазму крови, но в ней гораздо меньше белков. Функции лимфы, так же как и крови, направлены на поддержание гомеостаза. С помощью лимфы происходит возврат белков из межклеточной жидкости в кровь. В лимфе много лимфоцитов и макрофагов, и она играет большую роль в реакциях иммунитета. Кроме того, происходит всасывание в лимфу продуктов переваривания жиров в ворсинках тонкого кишечника.

Стенки лимфатических сосудов очень тонкие, на них имеются складки, образующие клапаны, благодаря которым лимфа движется по сосуду только в одном направлении. В местах слияния нескольких лимфатических сосудов располагаются лимфатические узлы, выполняющие защитную функцию: в них задерживаются и уничтожаются болезнетворные бактерии и т. п. Самые крупные лимфатические узлы расположены на шее, в паху, в подмышечных областях.

Иммунитет

Иммунитет - это способность организма защищаться от инфекционных агентов (бактерий, вирусов, и т. д.) и чужеродных веществ (токсинов и т. п.). Если чужеродный агент проник через защитные барьеры кожи или слизистых оболочек и попал в кровь или лимфу, он должен быть уничтожен путем связывания антителами и (или) поглощения фагоцитами (макрофагами, нейтрофилами).

Иммунитет можно подразделить на несколько видов: 1. Естественный – врожденный и приобретенный 2. Искусственный – активный и пассивный.

Естественный врожденный иммунитет передается организму с генетическим материалом от предков. Естественный приобретенный иммунитет возникает в том случае, когда организм сам выработал антитела к какому-либо антигену, например, переболев корью, оспой и т. д., и сохранил память о структуре этого антигена. Искусственный активный иммунитет возникает в тех случаях, когда человеку вводят ослабленные бактерии или другие возбудители (вакцину) и это приводит к выработке антител. Искусственный пассивный иммунитет появляется при введении человеку сыворотки - готовых антител от переболевшего животного или другого человека. Этот иммунитет самый нестойкий и сохраняется всего несколько недель.

Введение - - - - - - - - - - - - - - - - - - - - - - - - - -

Основная часть:

1. Сердечно – сосудистая система - - - - - -

2. Кровь - - - - - - - - - - - - - - - - - - - - - - - -

3. Лимфатическая система - - - - - - - - - - -

4. Лимфатические сосуды - - - - - - - - - - -

5. Межклеточная жидкость - - - - - - - - - -

Заключение - - - - - - - - - - - - - - - - - - - - - - - -

Введение.

Любой организм - одноклеточный или многоклеточный - нуждается в определенных условиях существования. Эти условия обеспечивает организмам та среда, к которой они приспособились в ходе эволюционного развития

Существуют много данных в пользутого, что первые организмы обитали в море; из морской воды они черпали питательные вещества и кислород и туда же выделяли конечный продукты обмена. Необозримость морских просторов обеспечивала постоянный неограниченный источник необходимых веществ, а токсичные конечные продукты обмена разбавлялись в морской воде до пренебрежимо малых концентраций. Океан обеспечивал также почти постоянную температуру и необходимую влажность.

Кровь и другие жидкости тела высших животных часто называют "плененным морем", поскольку они, находясь внутри организма животных, выполняют те же функции, которые морская вода выполняет для одноклеточных обитателей моря. Однако, кроме того, кровь осуществляет некоторые другие гораздо более сложные функции, которые морская вода обеспечивать не может.

Можно сказать, что в общем функции большинства органов тела прямо или косвенно направлены на поддержание гомеостаза определяет, в каких условиях он способен существовать, причем условия эти ограниченны для всех организмов. Человек, например, теряет способность к поддержанию постоянства внеклеточной жидкости при очень низкой температуре или в очень сухой среде; в таких условиях человек погибает. Однако, поскольку человек принадлежит к теплокровным животным, он в состоянии поддерживать температуру тела и водный баланс лучше, чем это могут делать многое другие организмы, что позволяет ему существовать в довольно разнообразных средах.

Внутренней средой для клеток и организмов человека являются кровь, лимфа и тканевая жидкость.

Отдельные клетки и группы клеток человеческого организма чрезвычайно чувствительны к изменению окружающей их среды. Что же касается целого организма, то границы изменений внешней среды, которые он может переносить, значительно шире, чем у отдельных клеток. Клетки человека нормально функционируют лишь при температуре 36 - 38 о С. Повышение или понижение температуры за пределы этих границ приводят к нарушению функций клеток. Человек же, как известно, может нормально существовать при более значительных колебаниях температуры внешней среды.

1.Сердечно – сосудистая система.

Сердечно – сосудистая система включает сердце и сеть кровеносных сосудов. Почти полностью состоящие из мышц, сердце отвечает за прокачивание крови по организму. Кровь не только переносит питательные вещества и газы от одной части организма к другой, но также выступает в роли средства коммуникации, передавая химическую информацию в гормонах от желез внутренней секреции органам и тканям.

Сердце и кровеносные сосуды, рассматриваемые как единая анатомо – физиологическая система, обеспечивающая кровообращение в организме и кровоснабжения органов и тканей, необходимое для доставки к ним кислорода, а также питательных веществ и отведение продуктов обмена. Благодаря функции кровообращения сердечно – сосудистая система участвует в газообмене и теплообмене между организмом и окружающей среды, в регуляции физиологических процессов выделяемыми в кровь гормонами и тем самым в согласовании различных функций организма.

Объем кровотока, кровяное давление и другие важные параметры гемодинамики определяются не только работой сердца как насоса, но и функцией кровеносных сосудов. По особенностям морфологии и функцией выделяют следующие части сосудистого русла:1

1) аортоартериальную камеру, включающую аорту и крупные артерии эластичного типа; сокращение стенок этой камеры поддерживает давление в сосудах в период диастолы сердца;

2) сосуды сопротивления -- мелкие мышечные артерии и артериолы, просвет которых активно изменяется в связи с тем, что они участвуют в формировании артериального давления и распределения кровотока;

3) обменные сосуды – капилляры; проницаемость их мембран обеспечивает обмен веществ между кровью и тканями;

4)емкостные сосуды – венулы и вены, способные вместить во много раз больше крови, чем артерии. Чем выше тонус вен (меньше их емкость), тем энергичнее приток крови к сердцу, т.е. венозный возврат. При низком тонусе вены вмещают больше крови, кровоток в них замедляется, что равносильно депонированию части крови. Роль настоящих кровяных депо с отключением части крови из кровотока могут играть сосуды селезенки и частично печени.

Артериолы, капилляры, венулы и артериоловенулярные анастомозы составляют часть микроциркуляторного русла – структурной основы микроциркуляции.

Выделяют малый (легочный) и большой (телесный) круги кровообращения. Малый круг кровообращения начинается от правого желудочка сердца и завершается (по направлению тока крови) левым предсердием, в которое впадает легочные вены. Левый желудочек сердца и все сосуды, получающие из него кровь, составляют большой круг кровообращения, который завершается в правом предсердии.Из артерии большого круга артериальная, богатая кислородом кровь поступает в микроциркуляторное русло. Протекая по капиллярам, она становится в результате газообмена с тканями венозной, оттекает по венулам в вены и по ним доставляется в правое предсердие, а оттуда в правый желудочек сердца. Из правого желудочка сердца в артерии малого круга поступает венозная кровь, которая обогащает кислородом в капиллярах легких и, став артериальной, доставляется по легочным венам в левые отделы сердца, затем в артерии большого круга кровообращения. Сосудистая сеть ряда областей, органов (головного мозга, сердца, печени и др.) имеет особенности строения и функции, определяющие характерные для данного региона условия кровотока и кровоснабжения, или региональное кровоснабжение.

По обеспечению газообмена сердечно – сосудистая система тесно взаимодействует с системой дыхания, по участию в трофических процессах – с пищеварительной системой. В отведении из тканей продуктов обмена совместно с сердечно – сосудистой системой участвует лимфатическая система, из капиллярной сети которой лимфа отводится к лимфатическим узлам, а затем поступает в лимфатические протоки, впадающие в крупные вены.

2. Кровь.

Кровь имеет важное значение для функционирования организма. Еще до рождения человека сердце начинает проталкивать кровь по внутренней сети артерий и вен и заканчивает эту работу с его смертью. Кровь переносит кислород, пищу и другие важные вещества к тканям, а взамен выводит углекислоту и другие отработанные продукты, которые могут отравлять организм. Кровь помогает также разрушать микроорганизмы, вызывающие различные заболевания, а благодаря своей способности свертываться она является важным элементом естественной защиты организма.

Кровь -- не просто жидкость. Ее известная густота создается миллионами клеток, подобно тому, как ткани, кости и мышцы придают крепость телу. Кровь состоит из бесцветной жидкости, называемой плазмой, в которой плавают красные кровяные тельца, или эритроциты, белые кровяные тельца, или лейкоциты, и очень маленькие клетки – тромбоциты.

Как и весь организм, плазма состоит в основном из воды. Так как плазма является жидкостью, она способна проходить сквозь стенки мелких кровеносных сосудов, таких, как капилляры. Поэтому кровь непосредственно связана с околоклеточной жидкой средой, которая омывает поверхность всех клеток организма. Это означает, что минеральные и другие вещества могут переноситься от клетки к клетке по всему организму через плазму.

Плазма является средством транспортировки важного для организма топлива – глюкозы и основных жиров. Плазма переносит также и другие вещества, в частности, железо, необходимое для образования пигментного гемоглобина, содержащего кислород, а также ряд важных гормонов, например, гормон щитовидной железы. Таким образом, плазма состоит из водного раствора минеральных веществ, пищи и небольшого количества соединений, таких, как гормоны, а также еще одного важного компонента – протеина, который составляет основную часть плазмы.

Каждый литр плазмы содержит около 75 граммов протеина. Различают два вида протеина: альбумин (белок) и глобулин. Альбумин вырабатывается печенью. Являясь источником питания для тканей организма, он обеспечивает осмотическое давление, которое удерживает жидкую часть крови внутри кровеносных сосудов и не дает ей вытекать в ткани и проникать в клетки.Альбумин можно сравнить с губкой в циркулирующей жидкости, которая удерживает необходимую воду в кровеносном потоке и не позволяет организму превратиться в сырую желеобразную массу.

Вероятно, самыми важными сказываются глобулины, которые выступают в роли антител против инфекции. Кроме того, некоторые виды глобулина участвуют в образовании сгустков крови (тромбов) вместе с клетками.

Тромбоциты.

Тромбоциты - это мельчайшие клетки организма. Один миллилитр крови содержит около 250 мил. тромбоцитов; размер поперечного сечения клетки тромбоцита равен приблизительно трем микронам (один микрон – это около одной тысячной доли миллиметра).

Основная функция тромбоцитов – создание сгустков крови, необходимых для остановки кровотечения. Не так давно врачи заинтересовались, как же функционируют тромбоциты. Накопленные данные показывают, что тромбоциты играют, вероятно, не последнею роль в развитии артериосклероза – заболевания характерные доя западного мира.

Так как в крови содержится очень большое количество тромбоцитов, они всегда устремляются к месту кровотечения, чтобы создать там скопления.

Стенки кровеносных сосудов покрыты ровным слоем клеток, который называются клетками эпителия. Если данные слои разрывается, то здесь начинается кровотечение, компоненты крови контактируют с другими частями стенок кровеносного сосуда. Этот контакт побуждает тромбоцитов приклеиваться к стенкам сосуда и друг к другу, образуя таким образом пробку, которая останавливает кровотечение. После этого другие клетки крови начинают взаимодействовать, образуя фебрин, который способствует окончательному устранению повреждения.

Способность крови свертываться, или коагулировать, и таким образом предотвратить смертельный исход от кровотечения при повреждении кровеносных сосудов, являются результатом взаимодействия тромбоцитов и дюжины биохимических веществ, называемыми факторами свертывания, среди которых важное место отводится протромбину. Эти факторы присутствуют в жидкой части крови – плазме.

Красные кровяные тельца.

Красные кровяные тельца выступают в роли транспортеров, перенося кислород из легких в ткани. Затем она забирают углекислоту – продукты обмена работы клеток – и несут ее в легкие, где она выдыхается. Красные кровяные тельца в состоянии совершать это, поскольку содержат миллионы молекул вещества. Называемого гемоглобином.

В легких кислород очень быстро соединяется с гемоглобином, придавая красным кровяным тельцам ярко – красную окраску, вследствие чего они и получили свое название.Кровь, обогащенная кислородом, по артериям поступает к тканям. С помощью ферментов (энзимов), имеющихся в красных кровяных тельцах, двуокись углерода и вода, также являющихся продуктом обмена деятельности клеток, забираются красными кровяными тельцами и по венам переносятся в легкие. Выработка красных кровяных клеток начинается с первых недель после зачатия, и с первых течении трех месяцев развития плода и их создание происходит в печени.

Белые кровяные тельца.

Белые кровяные тельца – лейкоциты – по размеру больше, чем красные кровяные тельца, и сильно от них отличаются.В отличие от красных клеток белые клетки не являются однородными, движение их более медленное. Участвуя в защите организма от болезней, белые клеткиподразделяются на три основные группы: полиморфы, лимфоциты и моноциты.

Полиморфы, которые составляют от 50 до 75 процентов белых клеток, также делится на три вида. Наиболее многочисленные из них – нейтрофилы. Они начинают действовать, болезнетворные бактерии атакуют организм. Привлеченные химическими веществами, которые выделяют бактерии, они устремляются к очагу инфекции и начинают поглощать бактерии. Гной, который собирается в том месте, где есть инфекция, является результатом работы полиморфов; он состоит в основном из мертвых белых клеток.

Вторая разновидность полиморфов – эозинофилы. Они названы так потому, что их гранулы приобретают розовую окраску, тогда кровь смешивается с красными эозином. Составляя всего лишь от 1 до 4 процентов белых клеток, эозинофилы отражают атаку бактерий, а также играют другую жизненно важную роль. Когда инородные протеины или антигены попадают в кровь, вырабатываются вещества, называемые антителами, которые соединяются с антигенами, нейтрализуя их действие. В процессе этого высвобождается химический гистамин. Если количество гистамина слишком большое, эозинофилы заглушают его действие, в противном случае может возникнуть аллергическая реакция. После соединения антител и антигенов эозинофилы удаляют химические остатки.

Третьей разновидностью полиморфов являются базофилы. Они составляют менее 1 процента всех белых кровяных клеток, но имеют важное значение для жизнедеятельности организма, поскольку их гранулы вырабатывают и выделяют гепарин, который не дает крови возможность образовывать сгустки внутри сосудов.

Лимфоциты.

25 процентов белых кровяных телец составляют лимфоциты,которые имеют плотные, сферической формы ядра. Лимфоциты играют жизненно важную роль для организма, обеспечивая ему естественным иммунитет к заболеваниям. Для этого они вырабатывают антитоксины, которые выступают как противодействие разрушительному действию сильных токсинов или химических веществ, выделяемых бактериями. Лимфоциты вырабатывают также антитела и химические вещества, которые не позволяют клеткам организмам погибнуть от натиска бактерий. И, наконец, последний вид белых клеток -- моноциты, которые составляют 8 процентов всех белых клеток. Самые большие моноциты имеют крупные ядра, они поглощают бактерии и удаляют остатки органических веществ, являющихся результатом разрушающего действия бактерий.

Действие полиморфов и моноцитов по отношению к болезнетворным бактериям называются воспалительной реакцией, так как воспаление является ответом организма на повреждение на локальном уровне. Деятельность же лимфоцитов против проникающих микроорганизмов и других субстанций называется иммунной реакцией. Обе реакции могут проходить одновременно.

3. Лимфатическая система.

Лимфатическая система - это еще одна система сосудов в организме, по которым переносится жидкость. Лимфатические сосуды отвечают за вывод избыточной жидкости, инородных частиц и других веществ из тканей организма и клеток. Эта система, следовательно, предназначена для освобождения от отработанных и потенциально вредных частиц. Поэтому она действует непосредственно вместе с кровью, в частности, с белыми кровяными тельцами, лимфоцитами, которые особенно важны для защиты организма от болезней. Лимфатическая система состоит из сети тонких сосудов, которые собирают избыточную жидкость (лимфу) из клеток организма и тканей и возвращает ее в кровяное русло. Лимфатические сосуды впадают в специальные вены около сердца через правый лимфатический проток и грудной проток.

4.Лимфатические сосуды.

Лимфо - сосудистая, или лимфатическая, система состоит из лимфатических сосудов и высоко специализированных лимфоидных органов тканей, в том числе вилочковой (зобной) железы, селезенки и миндалевидных желез.

Малые лимфатические сосуды (самые маленькие из них называются лимфатическими капиллярами) проходят рядом с артериями и венами организма. Лимфатические сосуды собирают избыточную жидкость (лимфу) из тканей. Стенки лимфатических капилляров очень тонкие и сильно проницаемые, так что лимфа выносит большие молекулы и частицы, которые не могут проникнуть в кровеносные капилляры.

Некоторые лимфатические сосуды имеют гладкую мышцу, которая ритмично сокращается в одном направлении, проталкивая вперед лимфу. Лимфатические сосуды имеют также клапаны, которые не дают лимфе течь в обратном направлении.

Лимфатические сосуды находятся во всех частях тела, за исключением центральной нервной системе, костях, хрящах, зубах. Компоненты лимфы, содержащиеся в сосудах, зависит от места нахождения сосудов. Например, сосуды конечностей содержат жидкость, превышающую потребности организма, которая забрана из клеток кровеносными сосудами; поэтому лимфа богата протеином. Лимфа же кишечников полна жиров, называемых хилусом, который лимфа вбирает в себя из кишок во время пищеварения. Эта лимфа имеет молочный цвет.

На протяжении своего пути в разных местах лимфатические сосуды соединяются с тканевыми узлами, известные как лимфатические узлы (иногда их называют еще лимфатическими железами). Именно из них белые кровяные тельца, организму как в кровеносных, как и в лимфатических сосудах. Лимфатические узлы располагаются вокруг больших артерий; прощупать узлы можно в тех местах, где артерии проходят близко к поверхности кожи. Например, лимфатические узлы встречаются в паху, подмышечной впадине, на шее. Попадая в лимфатические узлы, бактерии и другие инородные частицы, присутствующие в лимфе, отфильтровываются и уничтожаются. Покидая лимфатический узел, лимфа забирает лимфоциты и антитела - протеиновые вещества, которые активируют инородные частицы.

Все лимфатические сосуды, соединяясь вместе, образуют два больших протока - грудной и правый лимфатический проток, которые впадают в безымянные вены около сердца. Лимфа, следовательно, течет из тканей в кровь по лимфатической системе.

Кровь, тканевая жидкость, лимфа и их функции. Иммунитет

Кровь, лимфа и тканевая жидкость образуют внутреннюю среду орга­низма, которая окружает все его клетки. Химический состав и фи­зико-химические свойства внутрен­ней среды относительно постоян­ны, поэтому клетки организма су­ществуют в относительно стабиль­ных условиях и мало подвержены воздействию факторов внешней среды. Обеспечение постоянства внутренней среды достигается не­прерывной и согласованной рабо­той многих органов (сердца, пище­варительной, дыхательной, выде­лительной систем), которые по­ставляют организму необходимые для жизни вещества и удаляют из него продукты распада. Регулятор-ную функцию по поддержанию постоянства параметров внутрен­ней среды организма - гомеоста-за - осуществляют нервная и эн­докринная системы.

Между тремя составляющими внутреннюю среду организма суще­ствует тесная взаимосвязь. Так, бес­цветная и полупрозрачная ткане­вая жидкость образуется из жид­кой части крови - плазмы, прони­кающей через стенки капилляров в межклеточное пространство, и из продуктов жизнедеятельности, по­ступающих из клеток (рис. 4.13). У взрослого человека ее объем дос­тигает 20 л в сутки. Кровь в ткане­вую жидкость поставляет необхо­димые клеткам растворенные пита­тельные вещества, кислород, гормо­ны и поглощает продукты жизнедеятельности клеток - углекислый газ, мочевину и др.

Меньшая часть тканевой жидко­сти, не успевая возвратиться в кро­вяное русло, поступает в слепо зам­кнутые капилляры лимфатических сосудов, образуя лимфу. На вид - это полупрозрачная жидкость жел­товатого цвета. Состав лимфы бли­зок к составу плазмы крови. Одна­ко белка в ней содержится в 3-4 раза меньше, чем в плазме, но боль­ше, чем в тканевой жидкости. В лимфе имеется небольшое количе­ство лейкоцитов. Мелкие лимфати­ческие сосуды, сливаясь, образуют более крупные. В них имеются по­лулунные клапаны, обеспечиваю­щие ток лимфы в одном направле­нии - к грудному и правому лим­фатическому протокам, впадающим

в верхнюю полую вену. В многочис­ленных лимфатических узлах, че­рез которые протекает лимфа, она обезвреживается за счет деятельно­сти лейкоцитов и в кровь поступает очищенной. Движение лимфы мед­ленное, около 0,2-0,3 мм в мину­ту. Происходит оно главным обра­зом за счет сокращений скелетных мышц, присасывающего действия грудной клетки при вдохе и в мень­шей степени за счет сокращений мышц собственных стенок лимфа­тических сосудов. За сутки в кровь возвращается около 2 л лимфы. При патологических явлениях, наруша­ющих отток лимфы, наблюдается отек тканей.

Кровь - третья составляющая внутренней среды организма. Это ярко-красная жидкость, непрерывно циркулирующая в замкнутой системе кровеносных сосудов чело­века и составляющая около 6-8% от общей массы тела. Жидкая часть крови - плазма - составляет око­ло 55%, остальная часть приходит­ся на форменные элементы - клет­ки крови.

В плазме около 90-91% воды, 7-8% белков, 0,5% липидов, 0,12% моносахаридов и 0,9% ми­неральных солей. Именно плазма осуществляет перенос различных веществ и клеток крови.

Белки плазмы фибриноген и протромбин принимают участие в свертывании крови, глобулины иг­рают важную роль в иммунных ре­акциях организма, альбумины при­дают крови вязкость и связывают присутствующий в крови кальций.

Среди клеток крови больше всего эритроцитов - красных кровяных клеток. Это мелкие дво­яковогнутые диски, лишенные ядра. Их диаметр примерно равен диаметру самых узких капилля­ров. В эритроцитах присутствует гемоглобин, который легко связы­вается с кислородом в участках, где его концентрация высока (легкие), и так же легко отдает его в местах с низкой концентрацией кислоро­да (ткани).

Лейкоциты - белые ядерные клетки крови - по размеру чуть больше эритроцитов, но в крови их содержится значительно меньше. Они играют важную роль в защите организма от болезней. Благодаря своей способности к амебоидному движению они могут проходить сквозь небольшие поры в стенках капилляров в местах, где имеются болезнетворные бактерии, и погло­щать их путем фагоцитоза. Другие

типы лейкоцитов способны выраба­тывать защитные белки - анти­тела - в ответ на попадание в орга­низм чужеродного белка.

Тромбоциты (кровяные плас­тинки) - самые мелкие из клеток крови. В тромбоцитах содержатся вещества, которые играют важную роль в свертывании крови.

Одна из важнейших защитных функций крови - защитная - осуществляется с участием трех механизмов:

а) свертывания крови, благода­ря которому предотвращаются кро-вопотери при травмах кровеносных сосудов;

б) фагоцитоза, осуществляемо­го лейкоцитами, способными к аме­боидному движению и фагоцитозу;

в) иммунной защиты, осуще­ствляемой антителами.

Свертывание крови - слож­ный ферментативный процесс, зак­лючающийся в переходе раствори­мого белка плазмы крови фибрино­гена в нерастворимый белок фиб­рин, образующий основу кровяно­го сгустка - тромба. Процесс свер­тывания крови запускается выхо­дом из разрушенных во время трав­мы тромбоцитов активного фермен­та тромбопластина, который в присутствии ионов кальция и ви­тамина К через ряд промежуточных веществ приводит к образованию нитевидных белковых молекул фибрина. В сети, образованной во­локнами фибрина, задерживаются эритроциты и в результате образу­ется кровяной сгусток. Подсыхая и сжимаясь, он преобразуется в ко­рочку, препятствующую потере крови.

Фагоцитоз осуществляется не­которыми типами лейкоцитов, способными передвигаться с помощью ложноножек в места повреждения клеток и тканей организма, где об­наруживаются микроорганизмы. Приблизившись и затем прижав­шись к микробу, лейкоцит погло­щает его внутрь клетки, где под влиянием ферментов лизосом пере­варивает.

Иммунная защита осуществля­ется благодаря способности защит­ных белков - антител - распоз­навать проникший в организм чу­жеродный материал и индуцировать важнейшие иммунофизиологичес-кие механизмы, направленные на его обезвреживание. Чужеродным материалом могут быть молекулы белков на поверхности клеток мик­роорганизмов либо посторонние клетки, ткани, хирургически пере­саживаемые органы или изменив­шиеся клетки собственного организ­ма (например, раковые).

По происхождению различают врожденный и приобретенный им­мунитет.

Врожденный (наследствен­ный, или видовой) иммунитет пре­допределен генетически и обуслов­лен биологическими, наследствен­но закрепленными особенностями. Этот иммунитет передается по на­следству и характеризуется невос­приимчивостью одного вида живот­ных и человека к патогенным аген­там, вызывающим заболевания у других видов.

Приобретенный иммунитет бывает естественным и искусствен­ным. Естественный иммунитет представляет собой невосприимчи­вость к тому или иному заболева­нию, полученную организмом ре­бенка в результате проникновения антител матери в организм плода

через плаценту (плацентар­ный иммунитет), либо приобре­тенную в результате перенесенного заболевания (постинфекци­онный иммунитет).

Искусственный иммунитет мо­жет, быть активным и пассивным. Активный искусственный им­мунитет вырабатывается в организ­ме после введения вакцины - пре­парата, содержащего ослабленных или убитых возбудителей той или иной болезни. Такой иммунитет менее длительный, чем постинфек­ционный и, как правило, для его поддержания через несколько лет необходимо проводить повторную вакцинацию. В медицинской прак­тике широко пользуются пассив­ной иммунизацией, когда забо­левшему человеку вводят лечебные сыворотки с уже содержащимися в них готовыми антителами против этого возбудителя заболевания. Та­кой иммунитет будет сохраняться до тех пор, пока не погибнут антитела (1-2 месяца).

Кровь, тканеная жидкость и лимфа - внутренняя среда орга­низма Для лее характерно отно­сительное постоянство химическо­го сост ава и физико-химических свойств, что достигается непрерывной и согласованной работой многих органов. Обмен веществ между кровью и клетками происходит через тканевую жидкость.

Защитная: функция крови осуществляется благодаря свертыванию, фагоцитозу и иммунной з ащите. Различают врожденный и приобретенный иммунитет. При -обретенный иммунитет может быть естественным и искусствен­ным.

I. Какова взаимосвязь между элементами внутренней среды организма человека? 2. Какова роль плазмы крови? 3. В чем выражается связь строения эритро-

цитов с выполняемыми ими функциями? 4. Как осуществляется защитная функция

5. Дайте обоснование понятиям: наследственный, естественный и искусственный, активный и пассивный иммунитет.

Словосочетание «внутренняя среда организма» появилось благодаря французскому физиологу жившему в XIX веке. В своих работах он делал акцент на том, что необходимым условием жизни организма является поддержание постоянства во внутренней среде. Данное положение стало основой для теории о гомеостазе, которая была сформулирована позже (в 1929 году) ученым Уолтером Кенноном.

Гомеостазис - относительное динамическое постоянство внутренней среды, а также некоторая статичность физиологических функций. Внутренняя среда организма образована двумя жидкостями - внутриклеточной и внеклеточной. Дело в том, что каждая клетка живого организма выполняет определенную функцию, поэтому ей необходимо постоянное поступление питательных веществ и кислорода. Также она испытывает потребность в постоянном удалении продуктов обмена. Необходимые компоненты могут проникать через мембрану исключительно в растворенном состоянии, именно поэтому каждую клетку омывает тканевая жидкость, которая имеет в своем составе все необходимое для ее жизнедеятельности. Она относится к так называемой внеклеточной жидкости, и на ее долю приходится 20 процентов массы тела.

Внутренняя среда организма, состоящая из внеклеточной жидкости, содержит:

  • лимфы (составная часть тканевой жидкости) - 2 л;
  • крови - 3 л;
  • интерстициальной жидкости - 10 л;
  • трансцеллюлярной жидкости - около 1 л (в ее состав входят спинномозговая, плевральная, синовиальная, внутриглазная жидкости).

Все они имеют разный состав и отличаются по своим функциональным свойствам. Более того, внутренняя среда может иметь небольшую разницу между расходом веществ и их поступлением. Из-за этого их концентрация постоянно колеблется. Например, количество сахара в крови взрослого человека может колебаться от 0,8 до 1,2 г/л. В том случае, если в крови содержится большее или меньшее количество определенных компонентов, чем необходимо, это свидетельствует о наличии заболевания.

Как уже отмечалось, внутренняя среда организма в качестве одного из компонентов содержит кровь. Она состоит из плазмы, воды, белков, жиров, глюкозы, мочевины и минеральных солей. Основным ее местонахождением являются (капилляры, вены, артерии). Образовывается кровь за счет поглощения белков, углеводов, жиров, воды. Основной ее функцией является взаимосвязь органов с внешней средой, доставка к органам необходимых веществ, выведение продуктов распада из организма. Также она выполняет защитную и гуморальную функции.

Тканевая жидкость состоит из воды и растворенных в ней питательных веществ, СО 2 , О 2 , а также из продуктов диссимиляции. Она находится в промежутках между клетками тканей и образовывается за счет Тканевая жидкость является промежуточной между кровью и клетками. Она переносит из крови в клетки О 2 , минеральные соли,

Лимфа состоит из воды и растворенных в ней Она находится в лимфатической системе, которая состоит из лимфатических капилляров, сосудов, слитых в два протока и впадающих в полые вены. Образовывается за счет тканевой жидкости, в мешочках, которые находятся на концах лимфатических капилляров. Основной функцией лимфы является возвращение тканевой жидкости в кровеносное русло. Кроме этого, она фильтрует и обеззараживает тканевую жидкость.

Как мы видим, внутренняя среда организма является совокупностью физиологических, физико-химических, соответственно, и генетических условий, которые влияют на жизнеспособность живого существа.

Внутренняя среда организма - это кровь, лимфа и жидкость, заполняющая промежутки между клетками и тканями. Кровеносные и лимфатические сосуды, пронизывающие все органы человека, имеют в своих стенках мельчайшие поры, через которые могут проникать даже некоторые клетки крови. Вода, составляющая основу всех жидкостей в организме, вместе с растворенными в ней органическими и неорганическими веществами легко проходит через стенки сосудов. Вследствие этого химический состав плазмы крови (то есть жидкой части крови, не содержащей клеток), лимфы и тканевой жидкости во многом одинаков. С возрастом существенных изменений химического состава этих жидкостей не происходит. В то же время различия в составе указанных жидкостей могут быть связаны с деятельностью тех органов, в которых эти жидкости находятся.

Кровь

Состав крови. Кровь - это красная непрозрачная жидкость, состоящая из двух фракций - жидкой, или плазмы, и твердой, или клеток - форменных элементов крови. Разделить кровь на эти две фракции довольно легко с помощью центрифуги: клетки тяжелее плазмы и в центрифужной пробирке они собираются на дне в виде красного сгустка, а над ним остается слой прозрачной и почти бесцветной жидкости. Это и есть плазма.

Плазма. В организме взрослого человека содержится около 3 л плазмы. У взрослого здорового человека плазма составляет свыше половины (55 %) объема крови, у детей - несколько меньше.

Более 90 % состава плазмы - вода, остальное - растворенные в ней неорганические соли, а также органические вещества: углеводы, карбоновые, жирные кислоты и аминокислоты, глицерин, растворимые белки и полипептиды, мочевина и т.п. Все вместе они определяют осмотическое давление крови, которое в организме поддерживается на постоянном уровне, чтобы не причинить вреда клеткам самой крови, а также всем остальным клеткам организма: увеличенное осмотическое давление приводит к съеживанию клеток, а при пониженном осмотическом давлении они разбухают. В обоих случаях клетки могут погибнуть. Поэтому для введения разнообразных лекарств в организм и для переливания замещающих кровь жидкостей в случае большой кровопотери, используют специальные растворы, имеющие точно такое же осмотическое давление, как и кровь (изотонические). Такие растворы называются физиологическими. Простейшим по составу физиологическим раствором является 0,1 % раствор поваренной соли NaCl (1 г соли на литр воды). Плазма участвует в осуществлении транспортной функции крови (переносит растворенные в ней вещества), а также защитной функции, поскольку некоторые белки, растворенные в плазме, обладают противомикробным действием.

Клетки крови. В крови встречаются клетки трех основных типов: красные кровяные клетки, или эритроциты, белые кровяные клетки, или лейкоциты ; кровяные пластинки, или тромбоциты . Клетки каждого из этих типов выполняют определенные физиологические функции, а все вместе они определяют физиологические свойства крови. Все клетки крови - короткоживущие (средний срок жизни 2 - 3 нед.), поэтому в течение всей жизни специальные кроветворные органы занимаются производством все новых и новых клеток крови. Кроветворение происходит в печени, селезенке и костном мозге, а также в лимфатических железах.

Эритроциты (рис. 11) - это безъядерные дисковидные клетки, лишенные митохондрий и некоторых других органелл и приспособленные для одной главной функции - быть переносчиками кислорода. Красный цвет эритроцитов определяется тем, что они несут в себе белок гемоглобин (рис. 12), в котором функциональный центр, так называемый гем, содержит атом железа в форме двухвалентного иона. Гем способен химически соединяться с молекулой кислорода (образующееся вещество называется оксигемоглобином) в том случае, если парциальное давление кислорода велико. Эта связь непрочная и легко разрушается, если парциальное Давление кислорода падает. Именно на этом свойстве и основана способность эритроцитов переносить кислород. Попадая в легкие, кровь в легочных пузырьках оказывается в условиях повышенного напряжения кислорода, и гемоглобин активно захватывает атомы этого плохо растворимого в воде газа. Но как только кровь попадает в работающие ткани, которые активно используют кислород, оксигемоглобин легко отдает его, подчиняясь «кислородному запросу» тканей. Во время активного функционирования ткани вырабатывают углекислый газ и другие кислые продукты, которые выходят через клеточные стенки в кровь. Это в еще большей степени стимулирует оксигемоглобин отдавать кислород, поскольку химическая связь тема и кислорода очень чувствительна к кислотности среды. Взамен гем присоединяет к себе молекулу СО 2 , унося ее к легким, где эта химическая связь также разрушается, СО 2 выносится с током выдыхаемого воздуха наружу, а гемоглобин освобождается и вновь готов присоединять к себе кислород.

Рис. 10. Эритроциты: a - нормальные эритроциты в форме двояковогнутого диска; б - сморщенные эритроциты в гипертоническом солевом растворе

Если во вдыхаемом воздухе оказывается угарный газ СО, то он вступает с гемоглобином крови в химическое взаимодействие, в результате которого образуется прочное вещество метоксигемоглобин, не распадающееся в легких. Тем самым гемоглобин крови выводится из процесса переноса кислорода, ткани не получают нужного количества кислорода, и человек ощущает удушье. В этом заключается механизм отравления человека на пожаре. Сходное действие оказывают некоторые другие мгновенные яды, которые также выводят из строя молекулы гемоглобина, например синильная кислота и ее соли (цианиды).

Рис. 11. Пространственная модель молекулы гемоглобина

В каждых 100 мл крови содержится около 12 г гемоглобина. Каждая молекула гемоглобина способна «тащить» на себе 4 атома кислорода. В крови взрослого человека содержится огромное количество эритроцитов - до 5 миллионов в одном миллилитре. У новорожденных детей их еще больше - до 7 миллионов, соответственно больше и гемоглобина. Если человек долгое время живет в условиях недостатка кислорода (например, высоко в горах), то количество эритроцитов в его крови еще более увеличивается. По мере взросления организма количество эритроцитов волнообразно изменяется, но в целом у детей их несколько больше, чем у взрослых. Снижение количества эритроцитов и гемоглобина в крови ниже нормы свидетельствует о тяжелом заболевании - анемии (малокровии). Одной из причин анемии может быть недостаток железа в пище. Железом богаты такие продукты, как говяжья печень, яблоки и некоторые другие. В случаях длительной анемии необходимо принимать лекарственные препараты, содержащие соли железа.

Наряду с определением уровня гемоглобина в крови к наиболее распространенным клиническим анализам крови относится измерение скорости оседания эритроцитов (СОЭ), или реакции оседания эритроцитов (РОЭ), - это два равноправных названия одного и того же теста. Если предотвратить свертывание крови и оставить ее в пробирке или капилляре на несколько часов, то без механического встряхивания тяжелые эритроциты начнут осаждаться. Скорость этого процесса у взрослых составляет от 1 до 15 мм/ч. Если этот показатель существенно выше нормы, это свидетельствует о наличии заболевания, чаще всего воспалительного. У новорожденных СОЭ составляет 1-2 мм/ч. К 3-летнему возрасту СОЭ начинает колебаться - от 2 до 17 мм/ч. В период от 7 до 12 лет СОЭ обычно не превышает 12 мм/ч.

Лейкоциты - белые кровяные клетки. Они не содержат гемоглобина, поэтому не имеют красной окраски. Главная функция лейкоцитов - защита организма от проникших внутрь него болезнетворных микроорганизмов и ядовитых веществ. Лейкоциты способны передвигаться с помощью псевдоподий, как амебы. Так они могут выходить из кровеносных капилляров и лимфатических сосудов, в которых их также очень много, и передвигаться в сторону скопления патогенных микробов. Там они пожирают микробы, осуществляя так называемый фагоцитоз.

Существует множество типов лейкоцитов, но наиболее типичными являются лимфоциты, моноциты и нейтрофилы. Более всего активны в процессах фагоцитоза нейтрофилы, которые образуются, как и эритроциты, в красном костном мозге. Каждый нейтрофил может поглотить 20-30 микробов. Если в организм вторгается крупное инородное тело (например, заноза), то множество нейтрофилов облепляют его, формируя своеобразный барьер. Моноциты - клетки, образующиеся в селезенке и печени, также участвуют в процессах фагоцитоза. Лимфоциты, которые образуются главным образом в лимфатических узлах, не способны к фагоцитозу, но активно участвуют в других иммунных реакциях.

В 1 мл крови содержится в норме от 4 до 9 миллионов лейкоцитов. Соотношение между числом лимфоцитов, моноцитов и нейтрофилов называется формулой крови. Если человек заболевает, то общее число лейкоцитов резко увеличивается, меняется также и формула крови. По ее изменению врачи могут определить, с каким видом микроба борется организм.

У новорожденного ребенка количество белых клеток крови значительно (в 2-5 раз) больше, чем у взрослого, но уже через несколько дней оно снижается до уровня 10-12 миллионов на 1 мл. Начиная со 2-го года жизни эта величина продолжает снижаться и достигает типичных для взрослого величин после полового созревания. У детей очень активно идут процессы образования новых клеток крови, поэтому среди лейкоцитов крови у детей значительно больше молодых клеток, чем у взрослых. Молодые клетки отличаются по своему строению и функциональной активности от зрелых. После 15-16 лет формула крови приобретает свойственные взрослым параметры.

Тромбоциты - самые мелкие форменные элементы крови, количество которых достигает 200-400 миллионов в 1 мл. Мышечная работа и другие виды стресса способны в несколько раз увеличить число тромбоцитов в крови (в этом, в частности, заключена опасность стрессов для пожилых людей: ведь именно от тромбоцитов зависит свертываемость крови, в том числе образование тромбов и закупорка мелких сосудов головного мозга и сердечной мышцы). Место образования тромбоцитов - красный костный мозг и селезенка. Основная их функция - обеспечение свертывания крови. Без этой функции организм становится уязвимым при малейшем ранении, причем опасность заключается не только в том, что теряется значительное количество крови, но и в том, что любая открытая рана - это ворота для инфекции.

Если человек поранился, даже неглубоко, то при этом повредились капилляры, и тромбоциты вместе с кровью оказались на поверхности. Здесь на них действуют два важнейших фактора - низкая температура (гораздо ниже, чем 37 °С внутри тела) и обилие кислорода. Оба эти фактора приводят к разрушению тромбоцитов, и из них выделяются в плазму вещества, которые необходимы для формирования кровяного сгустка - тромба. Для того чтобы образовался тромб, кровь надо остановить, пережав крупный сосуд, если из него сильно льется кровь, поскольку даже начавшийся процесс образования тромба не пройдет до конца, если в ранку будут все время поступать новые и новые порции крови с высокой температурой и еще не разрушившимися тромбоцитами.

Чтобы кровь не свертывалась внутри сосудов, в ней присутствуют специальные противосвертывающие вещества - гепарин и др. Пока сосуды не повреждены, между веществами, стимулирующими и тормозящими свертывание, наблюдается баланс. Повреждение сосудов ведет к нарушению этого баланса. В старости и с увеличением заболеваний этот баланс у человека также нарушается, что увеличивает риск свертывания крови в мелких сосудах и образования опасного для жизни тромба.

Возрастные изменения функции тромбоцитов и свертывания крови были детально изучены А. А. Маркосяном, одним из основоположников возрастной физиологии в России. Было установлено, что у детей свертывание протекает медленнее, чем у взрослых, а образующийся сгусток имеет более рыхлую структуру. Эти исследования привели к формированию концепции биологической надежности и ее повышения в онтогенезе.