Строение вещества определяется не только взаимным расположением атомов в химических частицах, но и расположением этих химических частиц в пространстве. Наиболее упорядочено размещение атомов, молекул и ионов в кристаллах (от греческого "кристаллос " - лед), где химические частицы (атомы, молекулы, ионы) расположены в определенном порядке, образуя в пространстве кристаллическую решетку. При определенных условиях образования они могут иметь естественную форму правильных симметричных многогранников. Кристаллическое состояние характеризуется наличием дальнего порядка в расположении частиц и симметрией кристаллической решетки.

Для аморфного состояния характерно наличие только ближнего порядка. Структуры аморфных веществ напоминают жидкости, однако обладают гораздо меньшей текучестью. Аморфное состояние обычно неустойчиво. Под действием механических нагрузок или при изменении температуры аморфные тела могут закристаллизоваться. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом.

Аморфные вещества

Главный признак аморфного (от греческого "аморфос " - бесформенный) состояние вещества - отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.

В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.

Аморфные тела изотропны , то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Кристаллические вещества

Твердые кристаллы - трехмерные образования, характеризующиеся строгой повторяемостью одного и того же элемента структуры (элементарной ячейки ) во всех направлениях. Элементарная ячейка представляет собой наименьший объем кристалла в виде параллелепипеда, повторяющегося в кристалле бесконечное число раз.

Геометрически правильная форма кристаллов обусловлена, прежде всего, их строго закономерным внутренним строением. Если вместо атомов, ионов или молекул в кристалле изобразить точки как центры тяжести этих частиц, то получится трехмерное регулярное распределение таких точек, называемое кристаллической решеткой. Сами точки называют узлами кристаллической решетки.

Типы кристаллических решеток

В зависимости от того, из каких частицы построена кристаллическая решетка и каков характер химической связи между ними, выделяют различные типы кристаллов.

Ионные кристаллы образованы катионами и анионами (например, соли и гидроксиды большинства металлов). В них между частицами имеется ионная связь.

Ионные кристаллы могут состоять из одноатомных ионов. Так построены кристаллы хлорида натрия , иодида калия, фторида кальция.
В образовании ионных кристаллов многих солей участвуют одноатомные катионы металлов и многоатомные анионы, например, нитрат-ион NO 3 − , сульфат-ион SO 4 2− , карбонат-ион CO 3 2− .

В ионном кристалле невозможно выделить одиночные молекулы. Каждый катион притягивается к каждому аниону и отталкивается от других катионов. Весь кристалл можно считать огромной молекулой. Размеры такой молекулы не ограничены, поскольку она может расти, присоединяя новые катионы и анионы.

Большинство ионных соединений кристаллизуется по одному из структурных типов, которые отличаются друг от друга значением координационного числа, то есть числом соседей вокруг данного иона (4, 6 или 8). Для ионных соединений с равным числом катионов и анионов известно четыре основных типа кристаллических решеток: хлорида натрия (координационное число обоих ионов равно 6), хлорида цезия (координационное число обоих ионов равно 8), сфалерита и вюрцита (оба структурных типа характеризуются координационном числом катиона и аниона, равным 4). Если число катионов вдвое меньше числа анионов, то координационное число катионов должно быть вдвое больше координационного числа анионов. В этом случае реализуются структурные типы флюорита (координационные числа 8 и 4), рутила (координационные числа 6 и 3), кристобалита (координационные числа 4 и 2).

Обычно ионные кристаллы твердые, но хрупкие. Их хрупкость обусловлена тем, что даже при небольшой деформации кристалла катионы и анионы смещаются таким образом, что силы отталкивания между одноименными ионами начинают преобладать над силами притяжения между катионами и анионами, и кристалл разрушается.

Ионные кристаллы отличаются высокими температурами плавления. В расплавленном состоянии вещества, образующие ионные кристаллы, электропроводны. При растворении в воде эти вещества диссоциируют на катионы и анионы, и образующиеся растворы проводят электрический ток.

Высокая растворимость в полярных растворителях, сопровождающаяся электролитической диссоциацией обусловлена тем, что в среде растворителя с высокой диэлектрической проницаемостью ε уменьшается энергия притяжения между ионами. Диэлектрическая проницаемость воды в 82 раза выше, чем вакуума (условно существующего в ионном кристалле), во столько же раз уменьшается притяжение между ионами в водном растворе. Эффект усиливается за счет сольватации ионов.

Атомные кристаллы состоят из отдельных атомов, объединенных ковалентными связями. Из простых веществ только бор и элементы IVA-группы имеют такие кристаллические решетки. Нередко соединения неметаллов друг с другом (например, диоксид кремния) также образуют атомные кристаллы.

Так же как и ионные, атомные кристаллы можно считать гигантскими молекулами. Они очень прочные и твердые, плохо проводят теплоту и электричество. Вещества, имеющие атомные кристаллические решетки, плавятся при высоких температурах. Они практически нерастворимы в каких-либо растворителях. Для них характерна низкая реакционная способность.

Молекулярные кристаллы построены из отдельных молекул, внутри которых атомы соединены ковалентными связями. Между молекулами действуют более слабые межмолекулярные силы. Они легко разрушаются, поэтому молекулярные кристаллы имеют низкие температуры плавления, малую твердость, высокую летучесть. Вещества, образующие молекулярные кристаллические решетки, не обладают электрической проводимостью, их растворы и расплавы также не проводят электрический ток.

Межмолекулярные силы возникают за счет электростатического взаимодействия отрицательно заряженных электронов одной молекулы с положительно заряженными ядрами соседних молекул. На силу межмолекулярного взаимодействия влияет много факторов. Важнейшими среди них является наличие полярных связей, то есть смещения электронной плотности от одних атомов к другим. Кроме того, межмолекулярное взаимодействие проявляется сильнее между молекулами с большим числом электронов.

Большинство неметаллов в виде простых веществ (например, иод I 2 , аргон Ar, сера S 8) и соединений друг с другом (например, вода, диоксид углерода, хлороводород), а также практически все твердые органические вещества образуют молекулярные кристаллы.

Для металлов характерна металлическая кристаллическая решетка. В ней имеется металлическая связь между атомами. В металлических кристаллах ядра атомов расположены таким образом, чтобы их упаковка была как можно более плотной. Связь в таких кристаллах является делокализованной и распространяется на весь кристалл. Металлические кристаллы обладают высокой электрической проводимостью и теплопроводностью, металлическим блеском и непрозрачностью, легкой деформируемостью.

Классификация кристаллических решеток отвечает предельным случаям. Большинство кристаллов неорганических веществ принадлежит к промежуточным типам - ковалентно-ионным, молекулярно-ковалентным и т.д. Например, в кристалле графита внутри каждого слоя связи ковалентно-металлические, а между слоями - межмолекулярные.

Изоморфизм и полиморфизм

Многие кристаллические вещества имеют одинаковые структуры. В то же время одно и то же вещество может образовывать разные кристаллические структуры. Это находит отражение в явлениях изоморфизма и полиморфизма .

Изоморфизм заключается в способности атомов, ионов или молекул замещать друг друга в кристаллических структурах. Этот термин (от греческих "изос " - равный и "морфе " - форма) был предложен Э. Мичерлихом в 1819 г. Закон изоморфизма бы сформулирован Э. Мичерлихом в 1821 г. таким образом: "Одинаковые количества атомов, соединенные одинаковым способом, дают одинаковые кристаллические формы; при этом кристаллическая форма не зависит от химической природы атомов, а определяется только их числом и относительным положением".

Работая в химической лаборатории Берлинского университета, Мичерлих обратил внимание на полное сходство кристаллов сульфатов свинца, бария и стронция и близость кристаллических форм многих других веществ. Его наблюдения привлекли внимание известного шведского химика Й.-Я. Берцелиуса , который предложил Мичерлиху подтвердить замеченные закономерности на примере соединений фосфорной и мышьяковой кислот. В результате проведенного исследования был сделан вывод, что "две серии солей различаются лишь тем, что в одной в качестве радикала кислоты присутствует мышьяк, а в другой - фосфор". Открытие Мичерлиха очень скоро привлекло внимание минералогов, начавших исследования по проблеме изоморфного замещения элементов в минералах.

При совместной кристаллизации веществ, склонных к изоморфизму (изоморфных веществ), образуются смешанные кристаллы (изоморфные смеси). Это возможно лишь в том случае, если замещающие друг друга частицы мало различаются по размерам (не более 15%). Кроме того, изоморфные вещества должны иметь сходное пространственное расположение атомов или ионов и, значит, сходные по внешней форме кристаллы. К таким веществам относятся, например, квасцы. В кристаллах алюмокалиевых квасцов KAl(SO 4) 2 . 12H 2 O катионы калия могут быть частично или полностью заменены катионами рубидия или аммония, а катионы алюминия - катионами хрома(III) или железа(III).

Изоморфизм широко распространен в природе. Большинство минералов представляет собой изоморфные смеси сложного переменного состава. Например, в минерале сфалерите ZnS до 20% атомов цинка могут быть замещены атомами железа (при этом ZnS и FeS имеют разные кристаллические структуры). С изоморфизмом связано геохимическое поведение редких и рассеянных элементов, их распространение в горных породах и рудах, где они содержатся в виде изоморфных примесей.

Изоморфное замещение определяет многие полезные свойства искусственных материалов современной техники - полупроводников, ферромагнетиков, лазерных материалов.

Многие вещества могут образовывать кристаллические формы, имеющие различные структуру и свойства, но одинаковый состав (полиморфные модификации). Полиморфизм - способность твердых веществ и жидких кристаллов существовать в двух или нескольких формах с различной кристаллической структурой и свойствами при одном и том же химическом составе. Это слово происходит от греческого "полиморфос " - многообразный. Явление полиморфизма было открыто М. Клапротом , который в 1798 г. обнаружил, что два разных минерала - кальцит и арагонит - имеют одинаковый химический состав СаСО 3 .

Полиморфизм простых веществ обычно называют аллотропией, в то же время понятие полиморфизма не относится к некристаллическим аллотропным формам (например, газообразным О 2 и О 3). Типичный пример полиморфных форм - модификации углерода (алмаз, лонсдейлит, графит, карбины и фуллерены), которые резко различаются по свойствам. Наиболее стабильной формой существования углерода является графит, однако и другие его модификации при обычных условиях могут сохраняться сколь угодно долго. При высоких температурах они переходят в графит. В случае алмаза это происходит при нагревании выше 1000 o С в отсутствие кислорода. Обратный переход осуществить гораздо труднее. Необходима не только высокая температура (1200-1600 o С), но и гигантское давление - до 100 тысяч атмосфер. Превращение графита в алмаз проходит легче в присутствии расплавленных металлов (железа, кобальта, хрома и других).

В случае молекулярных кристаллов полиморфизм проявляется в различной упаковке молекул в кристалле или в изменении формы молекул, а в ионных кристаллах - в различном взаимном расположении катионов и анионов. Некоторые простые и сложные вещества имеют более двух полиморфных модификаций. Например, диоксид кремния имеет десять модификаций, фторид кальция - шесть, нитрат аммония - четыре. Полиморфные модификации принято обозначать греческими буквами α, β, γ, δ, ε,... начиная с модификаций, устойчивых при низких температурах.

При кристаллизации из пара, раствора или расплава вещества, имеющего несколько полиморфных модификаций, сначала образуется модификация, менее устойчивая в данных условиях, которая затем превращается в более устойчивую. Например, при конденсации пара фосфора образуется белый фосфор, который в обычных условиях медленно, а при нагревании быстрее превращается в красный фосфор. При обезвоживании гидроксида свинца вначале (около 70 o С) образуется менее устойчивый при низких температурах желтый β-PbO, около 100 o С он превращается в красный α-PbO, а при 540 o С - снова в β-PbO.

Переход одной полиморфной модификации в другую называется полиморфными превращениями. Эти переходы происходят при изменении температуры или давления и сопровождаются скачкообразным изменением свойств.

Процесс перехода одной модификации в другую может быть обратимым или необратимым. Так, при нагревании белого мягкого графитоподобного вещества состава BN (нитрид бора) при 1500-1800 o С и давлении в несколько десятков атмосфер образуется его высокотемпературная модификация - боразон , по твердости близкий к алмазу. При понижении температуры и давления до значений, отвечающих обычным условиям, боразон сохраняет свою структуру. Примером обратимого перехода может служить взаимные превращения двух модификаций серы (ромбической и моноклинной) при 95 o С.

Полиморфные превращения могут проходить и без существенного изменения структуры. Иногда изменение кристаллической структуры вообще отсутствует, например, при переходе α-Fe в β-Fe при 769 o С структура железа не меняется, однако исчезают его ферромагнитные свойства.

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.

Наша задача познакомиться со строением вещества.

При низких температурах для веществ устойчиво твёрдое состояние.

Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.

У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы

Жидкие кристаллы открыты в конце XIX века, но изучены впоследние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водянойлёдплавится при температуре выше 200 0 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.

При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку .

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.

Одно и то же вещество в зависимости от условий (p , t ,…)существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.

Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК

ионная

металлическая

Что в узлах кристаллической решётки, структурная единица

ионы

атомы

молекулы

атомы и катионы


Тип химической связи между частицами узла

ионная

ковалентная: полярная и неполярная

металлическая

Силы взаимодействия между частицами кристалла

электростати-

ческие

ковалентные

межмолекуляр-

ные

электростати-

ческие

Физические свойства, обусловленные кристаллической решёткой

· силы притяжения между ионами велики,

· Т пл. (тугоплавкте),

· легко растворяются в воде,

· расплав и р-р проводит эл.ток,

· нелетучи (не имеют запаха)

· ковалентные связи между атомами велики,

· Т пл. и T кип очень,

· в воде не растворяются,

· расплав не проводит эл.ток

· силы притяжения между молекулами невелики,

· Т пл. ↓,

· некоторые растворяются в воде,

· обладают запахом – летучи

· силы взаимодействия велики,

· Т пл. ,

· Высокие тепло и электропроводность

Агрегатное состояние вещества при обычных условиях

твёрдое

твёрдое

твёрдое,

газообразное,

жидкое

твёрдое,

жидкое(Нg)

Примеры

большинство солей, щелочей, оксиды типичных металлов

С (алмаз, графит), Si , Ge , B , SiO 2 , CaC 2 ,

SiC (карборунд), BN , Fe 3 C , TaC (t пл. =3800 0 С)

Красный и чёрный фосфор. Оксиды некоторых металлов.

все газы, жидкости, большинство неметаллов: инертные газы, галогены, H 2 , N 2 , O 2 , O 3 , P 4 (белый), S 8 . Водородные соединения неметаллов, оксиды неметаллов: H 2 O ,

CO 2 «сухой лёд». Большинство органических соединений.

Металлы, сплавы


Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

  1. Взаимосвязь между положениемэлемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.

группа

III

VII

VIII

п

е

р

и

о

д

H 2

N 2

O 2

F 2

III

P 4

S 8

Cl 2

Br 2

I 2

Тип

кристаллическойрешётки

металлическая

атомная

молекулярная

Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:

  1. Что такое кристаллическая решётка?
  2. Какие виды кристаллических решёток существуют?
  3. Охарактеризуйте каждый вид кристаллической решётки по плану: Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:

  1. Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH 3 COOH ), сахар (C 12 H 22 O 11), калийное удобрение (KCl ), речной песок (SiO 2) – температура плавления 1710 0 C , аммиак (NH 3), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
  2. По формулам приведённых веществ: SiC , CS 2 , NaBr , C 2 H 2 - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
  3. Тренажёр №1. "Кристаллические решётки"
  4. Тренажёр №2. "Тестовые задания"
  5. Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:

a ). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула»не применимо по отношению к структурной единице вещества:

a ). вода

б). кислород

в). алмаз

г). озон

3) Атомная кристаллическая решётка характерна для:

a ). алюминияи графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления,электропроводно, то его кристаллическая решётка:

а). молекулярная

б). атомная

в). ионная

г). металлическая

Поговорим о твердых телах. Твердые тела можно разделить на две большие группы: аморфные и кристаллические . Разделять мы их будем по принципу есть порядок или нет.

В аморфных веществах молекулы располагаются хаотично. В их пространственном расположении нет никаких закономерностей. По сути, аморфные вещества – это очень вязкие жидкости, настолько вязкие, что твердые.

Отсюда и название: «а-» – отрицательная частица, «morphe» – форма. К аморфным веществам относятся: стекла, смолы, воск, парафин, мыло.

Отсутствие порядка в расположении частиц обусловливает физические свойства аморфных тел: они не имеют фиксированных температур плавления . По мере нагревания их вязкость постепенно снижается, и они также постепенно переходят в жидкое состояние.

В противоположность аморфным веществам существуют кристаллические. Частицы кристаллического вещества пространственно упорядочены. Это правильная структура пространственного расположения частиц в кристаллическом веществе называется кристаллической решеткой .

В отличии от аморфных тел, кристаллические вещества имеют фиксированные температуры плавления.

В зависимости от того какие частицы находятся в узлах решетки , и от того какие связи удерживают их различают: молекулярную , атомную , ионную и металлическую решетки.

Для чего принципиально важно знать, какая у вещества кристаллическая решетка? Что она определяет? Все. Структура определяет, как химические и физические свойства вещества .

Самый простой пример: ДНК. У всех организмов на земле она построена из одинакового набора структурных компонентов: нуклеотидов четырех видов. А какое многообразие жизни. Это все определяется структурой: порядком, в котором эти нуклеотиды расположены.

Молекулярная кристаллическая решетка.

Типичный пример вода – в твердом состоянии (лед). В узлах решетки находятся целые молекулы. И удерживают их вместе межмолекулярные взаимодействия : водородные связи, силы Ван-дер-Ваальса.

Связи эти слабые, поэтому молекулярная решетка – самая непрочная , температура плавления таких веществ низкая.

Хороший диагностический признак: если вещество имеет при нормальных условиях жидкое или газообразное состояние и/или имеет запах – то скорее всего у этого вещества молекулярная кристаллическая решетка. Ведь жидкое и газообразное состояния – это следствие того, что молекулы на поверхности кристалла плохо держатся (связи то слабые). И их «сдувает». Это свойство называется летучестью. А сдутые молекулы, диффундируя в воздухе доходят до наших органов обоняния, что субъективно ощущается как запах.

Молекулярную кристаллическую решетку имеют:

  1. Некоторые простые вещества неметаллов: I 2 , P, S (то есть все неметаллы, у которых не атомная решетка).
  2. Почти все органические вещества (кроме солей ).
  3. И как уже говорилось ранее, вещества при нормальных условиях жидкие, либо газообразные (будучи замороженными) и/или имеющие запах (NH 3 , O 2 , H 2 O, кислоты, CO 2).

Атомная кристаллическая решетка.

В узлах атомной кристаллической решетки, в отличие от молекулярной, располагаются отдельные атомы . Получается, что удерживают решетку ковалентные связи (ведь именно они связывают нейтральные атомы).

Классический пример – эталон прочности твердости – алмаз (по химической природе – это простое вещество углерод). Связи: ковалентные неполярные , так как решетку образуют только атомы углерода.

А вот, например, в кристалле кварца (химическая формула которого SiO 2) есть атомы Si и O. Поэтому связи ковалентные полярные .

Физические свойства веществ с атомной кристаллической решеткой:

  1. прочность, твердость
  2. высокие температуры плавления (тугоплавкость)
  3. нелетучие вещества
  4. нерастворимы (ни в воде, ни в других растворителях)

Все эти свойства обусловлены прочностью ковалентных связей.

Веществ в атомной кристаллической решеткой немного. Особой закономерности нет, поэтому их нужно просто запомнить:

  1. Аллотропные модификации углерода (C): алмаз, графит.
  2. Бор (B), кремний (Si), германий (Ge).
  3. Только две аллотропные модификации фосфора имеют атомную кристаллическую решетку: красный фосфор и черный фосфор. (у белого фосфора – молекулярная кристаллическая решетка).
  4. SiC – карборунд (карбид кремния).
  5. BN – нитрид бора.
  6. Кремнезем, горный хрусталь, кварц, речной песок – все эти вещества имеют состав SiO 2 .
  7. Корунд, рубин, сапфир – у этих веществ состав Al 2 O 3 .

Наверняка возникает вопрос: С – это и алмаз, и графит. Но они же совершенно разные: графит непрозрачный, пачкает, проводит электрический ток, а алмаз прозрачный, не пачкает и ток не проводит. Отличаются они структурой.

И то, и то – атомная решетка, но разная. Поэтому и свойства разные.

Ионная кристаллическая решетка.

Классический пример: поваренная соль: NaCl. В узлах решетки располагаются отдельные ионы : Na + и Cl – . Удерживает решетку электростатические силы притяжения между ионами («плюс» притягивается к «минусу»), то есть ионная связь .

Ионные кристаллические решетки довольно прочные, но хрупкие, температуры плавления таких веществ довольно высокие (выше, чем у представителей металлической, но ниже чем у веществ с атомной решеткой). Многие растворимы в воде.

С определением ионной кристаллической решетки, как правило, проблем не возникает: там, где ионная связь – там ионная кристаллическая решетка. Это: все соли , оксиды металлов , щелочи (и другие основные гидроксиды).

Металлическая кристаллическая решетка.

Металлическая решетка реализуется в простых веществах металлах . Ранее мы говорили, что все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Час настал.

Главное свойство металлов: электроны на внешнем энергетическом уровне плохо удерживаются, поэтому легко отдаются. Потеряв электрон металл превращается в положительно заряженный ион – катион:

Na 0 – 1e → Na +

В металлической кристаллической решетке постоянно протекают процессы отдачи, и присоединения электронов: от атома металла в одном узле решетки отрывается электрон. Образуется катион. Оторвавшийся электрон притягивается другим катионом (или этим же): вновь образуется нейтральный атом.

В узлах металлической кристаллической решетки находятся как нейтральные атомы, так и катионы металла. А между узлами путешествуют свободные электроны:

Эти свободные электроны называются электронным газом. Именно они обусловливают физические свойства простых веществ металлов:

  1. тепло- и электропроводность
  2. металлический блеск
  3. ковкость, пластичность

Это и есть металлическая связь: катионы металлов притягиваются к нейтральным атомам и все это «склеивают» склеивают свободные электроны.

Как определить тип кристаллической решетки.

P. S. Есть кое-что в школьной программе и программе ЕГЭ по этой теме то, с чем мы не совсем согласны. А именно: обобщение, о том, что любая связь металл-неметалл – это ионная связь. Это допущение, намеренно сделано, видимо, для упрощения программы. Но это ведет к искажению. Граница между ионной и ковалентной связью условная. У каждой связи есть свой процент «ионности» и «ковалентности». Связь с малоактивным металлом имеет малый процент «ионности», она больше похожа на ковалентную. Но по программе ЕГЭ, она «округляется» в сторону ионной. Это порождает, порой абсурдные вещи. Например, Al 2 O 3 – вещество с атомной кристаллической решеткой. О какой ионности здесь может идти речь. Только ковалентная связь может удерживать таким образом атомы. Но по стандарту «металл-неметалл» мы квалифицируем эту связь как ионную. И получается противоречие: решетка атомная, а связь ионная. Вот к чему приводит, излишнее упрощение.

Который при обычных условиях представляет собой газ, при температуре -194 °С превращается в жидкость голубого цвета, я при температуре -218,8º С затвердевает в снегообразную массу, состоящую из кристаллов синего цвета.

В этом параграфе мы рассмотрим, как влияют особенности химических связей на свойства твердых веществ. Температурный интервал существования вещества в твердом состоянии определяется его температурами кипения и плавления. Твердые вещества делятся на кристаллические и аморфные.
Аморфные вещества не имеют четкой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находится пластилин или различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов. - в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, который называют кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют изложи решетки.

В узлах воображаемой решетки могут находиться ионы, атомы и молекулы . Эти частицы совершают колебательные движения. С повышением температуры размах этих колебаний возрастает, что приводит, как правило, к тепловому расширению тел.

В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические (табл. 6).

Простые вещества остальных элементов, не представленные в таблице 6, имеют металлическую решетку.

Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na+,Сl-, так и сложные SO 2- 4, ОН-. Следовательно, ионные кристаллические решетки имеют соли, некоторые оксиды и гидроксиды металлов , то есть те вещества, в которых существует ионная химическая связь. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na+ и отрицательных Сl-, образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решетной обладают сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Атомными наливают кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентними связями. Примером веществ с таким типом кристаллических решеток может служить алмаз - одно из аллотропных видоизменений углерода.

Число веществ с атомной кристаллической решеткой не очень велико. К ним относятся кристаллические бор, кремний и германий, а также сложные вещества, например такие, в состав которых входит оксид кремния (IV) - SlО2: кремнезем, кварц, песок, горный хрусталь.

Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 ºС), они прочны и тверды, практически нерастворимы.

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными и неполяриыми. Несмотря на то что атомы внутри молекул связаны очень прочными ковалентными связями , между самими молекулами действуют слабые силы можмолекулярно-го притяжения. Поэтому вещества с молекулярными кристаллическими решетками имеют малую твердость, низкие температуры плавления, летучи.

Примерами веществ с молекулярными кристаллическими решетками являются твердая вода - лед, твердый оксид углерода (IV) - «сухой лед», твердые хлороводород и сероводород, твердые простые вещества, образованные одно- (благородные газы), двух- , трех- (О3), четырех- (Р4). восьмиатомными молекулами. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар).
Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны в общее пользование). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Для веществ, имеющих молекулярное строение, справедлив открытый французским химиком Ж. Л. Прустом (1799-1803) закон постоянства состава. В настоящее время этот закон формулируется так: «Молекулярные химические соединения независимо от способа их получения имеют постоянный состав и свойства. Закон Пруста является одним из основных законов химии. Однако для веществ с нсмолекулярным строением, например ионным, этот закон не всегда справедлив.

1. Твердое, жидкое и газообразное состояния вещества.

2. Твердые вещества: аморфные и кристаллические.

3. Кристаллические решетки: атомные, ионные, металлические и молекулярные.

4. Закон постоянства состава.

Какие свойства нафталина лежат в основе его применения для защиты шерстяных изделий от моли?
Какие качества аморфных тел применимы для опнсаиия особенностей характера отдельных людей?

Почему открытый датским ученым К. X. Эрстедом алюминий в 1825 г. еще долгое время относился к драгоценным металлам?

Вспомните произведение А. Беляева «Продавец воздуха» и охарактеризуйте свойства твердого кислорода, используя его описание, приведенное в книге.
Почему температура плавления металлов изменяется в очень широких пределах? Для подготовки ответа на этот вопрос используйте дополнительную литературу .

Почему изделие из кремния при ударе раскалывается на кусочки, а изделие из свинца только расплющивается? В каком из указанных случаев происходит разрушение химической связи, а в каком - нет? Почему?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Строение вещества.

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.
Наша задача познакомиться со строением вещества.


При низких температурах для веществ устойчиво твёрдое состояние.

☼ Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

☼ Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.
У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы.

Жидкие кристаллы открыты в конце XIX века, но изучены в последние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водяной лёд плавится при температуре выше 2000 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток.

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.
При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку.

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.
Одно и то же вещество в зависимости от условий (p, t,…) существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.
Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

☼ Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

☼ Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

☼ Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

☼ Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК







Свойства веществ с различной кристаллической решёткой (таблица)

Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

Взаимосвязь между положением элемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.



Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:
- Что такое кристаллическая решётка?
- Какие виды кристаллических решёток существуют?
- Охарактеризуйте каждый вид кристаллической решётки по плану:

Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:


- Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH3 COOH), сахар (C12 H22 O11 ), калийное удобрение (KCl), речной песок (SiO2 ) – температура плавления 1710 0C, аммиак (NH3 ), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
По формулам приведённых веществ: SiC, CS2 , NaBr, C2 H2 - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
Тренажёр №1. "Кристаллические решётки"
Тренажёр №2. "Тестовые задания"
Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:
a). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула» не применимо по отношению к структурной единице вещества:

б). кислород

в). алмаз

3) Атомная кристаллическая решётка характерна для:

a). алюминия и графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:

А). молекулярная

б). атомная

в). ионная

г). металлическая