Шум и его основные параметры

Звук – это колебательное движение в материальной среде, обладающей упругостью и инерционностью, вызванное каким-либо источником.

Распространение колебательного движения в среде называется звуковой волной.

Область среды, в которой распространяются звуковые волны, называется звуковым полем. В каждой точке звукового поля при распространении звуковой волны будет наблюдаться деформация среды, т.е. зона сжатия и разряжения.

Такая деформация приведет к изменению давления в среде. Разность между атмосферным давлением и давлением в данной точке звукового поля называется звуковым давлением (Р). Звуковое давление выражается в паскалях (Па). Сила звука может характеризоваться и количеством звуковой энергии. Средний поток звуковой энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной к направлению распространения звуковой волны, называется интенсивностью звука (I). За единицу измерения интенсивности принят Вт / м2.

За единицу частоты колебаний принят герц (Гц), равный 1 колебанию в секунду.

Интенсивность звука I в свободном поле связана с звуковым давлением, Вт / м2

где Р - среднеквадратичное значение давления (Па),

рс – удельное аккустическое сопротивление среды (для воздуха - 4,44 Нс / м3, для воды – 1,4 х 106 Нс / м3).

Скорость звука в газовой среде определяется по следующей зависимости:

(2.5.2)

где К – показатель адиобата (К= 1,44)

Р – давление воздуха (Па)

р – плотность воздуха (кг/м3)

Скорость звука зависит от свойств среды. Звуки в изотропной среде могут распространяться в виде сферических, плоских и цилиндрических волн. Когда размеры источника звука малы по сравнению с длиной волны, звук распространяется по всем направлениям в виде сферических волн. Если размеры источника больше чем длина излучаемой звуковой волны, то звук распространяется в виде плоской волны.

Плоская волна образуется на значительных расстояниях от источника любых размеров. Скорость звука в воздухе при t= 200 С и давлении 760 мм рт. ст, V= 344 м/с; в воде – 433м/с; в стали - 5000 м/с, в бетоне - 4000 м/с.

Если на пути распространения звуковой волны встречается препятствие, то в силу явления дифракции происходит огибание волнами препятствий. Величина огибания тем больше, чем больше длина волны по сравнению с размерами препятствия.

При длине волны меньшей размера препятствия, наблюдается отражение звуковых волн и образование за препятствием «звуковой тени» (шумозащитные экраны).

Графическое изображение частотного состава шума называется спектром.

Шум представляет собой хаотическое сочетание множества различных по частоте и силе звуков. В ГОСТ 12.1.003-76 (ССБТ) дана классификация шумов. По характеру спектра шумы делятся на широкополосные (с непрерывным спектром шириной более 1-ой октавы) и тональные (в спектре которых имеются слышимые дискретные тона) с превышением уровня в одном полюсе над соседними не менее чем на 10 дБ.

По времени действия шумы подразделяются на постоянные (уровень звука которых за 8-часовой рабочий день изменяются по времени не более чем на 5 дБ при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187-71) и непостоянные, при изменении уровня звука более 5 дБ. Непостоянные шумы, в свою очередь, делятся на колеблющиеся по времени (уровень звука которых непрерывно изменяется во времени), прерывистые (уровень звука которых резко падает до уровня фонового шума, с интервалом в 1 с и более), импульсные (состоящие из 1-го или нескольких звуковых сигналов с длительностью более 1 с и уровнем звука более 10 дБ). Вибрация является одним из источников шума.

Влияние шума на организм человека

Человек способен воспринимать звуки частотой от 16 до 20000 Гц различной силы и интенсивности от еле слышимых до болевых. В ухе человека находится около 25000 клеток, которые реагируют на звук. Всего человек различает 34 тысячи звуков различной частоты. Звуки частотой меньше 16-20 Гц называют инфразвуковыми, а частотой более 20000 Гц – ультразвуковыми.

Звук, а следовательно и шум имеет 2 характеристики:

1 – физическая (объективная)

2 – физиологическая (субъективная)

Физическая – колебательное движение среды характеризуется звуковым давлением. Наименьшая сила звука, которая воспринимается слуховым аппаратом человека, называется порогом слышимости данного звука (Ро) при частоте колебаний 1000 Гц Па или I= 10-12 Вт / м.2. Порогом слышимости называется минимальный уровень звукового давления на данной частоте, вызывающий слуховое ощущение (ГОСТ 12.4.062-78).

Человеческое ухо реагирует не на абсолютный прирост силы звука, а на относительное изменение силы звука. Изменение интенсивности и звукового давления воспринимаемого звука огромно и составляет соответственно 1014 и 107 раз.

Практическое использование абсолютных значений аккустических величин, например, для графического представления распределения звукового давления и интенсивности звука по частотному спектру невозможно из-за громоздкости графиков. При этом важно реагирование органов слуха на относительное изменение Р и I по отношению к пороговым величинам.

Так как между слуховым восприятием и раздражением существует почти логарифмическая зависимость, то для измерения звукового давления, интенсивности (сила звука) и звуковой мощности принята логарифмическая шкала. Это дало возможность значительный диапазон фактических значений (по звуковому давлению –106 и по интенсивности - 1012) разместить в небольшом интервале логарифмических единиц.

Поэтому введены логарифмические величины при определении уровня интенсивности звука (дБ):

(2.5.3)

и уровня звукового давления (дБ):

(2.5.4)

где Iо и Ро - соответствующие значения порога слышимости;

I и Р - замеренные величины уровней интенсивности звука и звукового давления.

Значение Ро выбрано таким образом, чтобы при нормальных атмосферных условиях Li = Lp.

За единицу измерений уровней I и P принят 1 Бел (Б).

Бел – это десятичный логарифм отношения фактических значений I и Р к пороговым значениям Io и Ро: I / Io = 10 - Ly = 1 Б или I / Io = 100 - Ly = 2 Б.

Учитывая, что наши органы слуха воспринимают различия в десятичную долю уровня интенсивности звукового давления, за единицу измерения принята более мелкая единица децибел (дБ), равная 0,1 Б.

Обычно параметры шума и вибрации оцениваются в октавных или третьоктавных диапазонах, где октава – это полоса частот с отношением верхней f2 и нижней f1 граничных частот равным 2 (f1 / f2 = 2). Для третьоктавной полосы f2 / f1 = 1,26. Для характеристики полосы в целом принята среднегеометрическая частота, которая равна:

(2.5.5)

Среднегеометрические частоты октавных полос стандартизованы.

Для звука (ГОСТ 12.1.001-89) с частотами более 11,2 кГц (ультразвук) среднегеометрические частоты третьоктавных полос равны 12500, 16000, 20000 Гц и более. Поэтому по ГОСТ 12.1.003-76 (ССБТ) характеристикой постоянного шума на рабочих местах являются уровни звуковых давлений в октавных полосах (дБ) со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц, определяемые по формуле (4.3. и 4.4).

Болевой порог восприятия звука соответствует и величинам I = 102 Вт/м2, Па.

Если подставить соответственно их в формулы 3.3. и 3.4., то получим дБ или дБ.

Разница уровней в 1 дБ соответствует минимальной величине различимой слухом, при этом интенсивность звука изменяется в 1,26 раза или на 26%. С учетом данного явления разработана шкала громкостей, воспринимаемых человеческим ухом, которая разделяется на 140 единиц. За нуль принята сила звука на пороге слышимости. Увеличение силы звука в 1,26 раза создает следующую ступень громкости. Уровень интенсивности различных звуков на расстоянии 1 м составляет: шепот 10-20 дБ, громкая речь 60-70 дБ, шум на улице 70-80 дБ, шум электропоезда 110дБ, шум реактивного двигателя 130-140дБ. Шум в 150 дБ непереносим для человека, в 180 дБ вызывает усталость металла, в 190 дБ вырывает заклепки из конструкций. Применение шкалы позволяет весь огромный диапазон интенсивности звука измерять в пределах от 0 до 140 дБ. При проверке уровня шума органами надзора или при разработке мер профилактики оценку постоянного шума на рабочем месте (LA) рассчитывают по формуле:

(2.5.6)

где РА= замеренная по шкале А шумомера по ГОСТ 17187-71, среднеквадратичная величина звукового давления (Па).


Однако уровень силы звука в дБ еще не позволяет судить о физиологическом ощущении громкости. Восприятие громкости звука зависит не только от уровня силы звука, но и от его частот (рис.2.5.1)

Рис. 2.5.1. Изолинии равной громкости.

Чувствительность слухового анализатора не одинакова к звукам различных частот и поэтому звуки, одинаковые по своей силе, но разные по частоте, могут оказаться на слух не одинаково громкими. Второй физиологической характеристикой звука является ощущение, воспринимаемое органами слуха, характеризующиеся громкостью. Ухо человека воспринимает звуки с частотой колебаний от 16 до 20000 Гц. Области звуковых колебаний с частотой до 16 Гц (инфразвуки) и более 20000 Гц (ультразвуки) ухом не улавливаются. Поэтому для оценки уровня интенсивности используется сравнение измеряемого звука с эталонным звуком частотой в 1000 Гц. Единицей измерения громкости является фон. Если какой-либо звук окажется на слух таким же громким, как звук частотой 1000 Гц и с уровнем силы 1 дБ, то уровень громкости данного звука принимается равным 1 фону. Различие между уровнем силы звука и уровнем громкости заключается в том, что первый определяет только чистую физическую величину уровня силы звука независимо от частоты, а второй учитывает также и физиологическое, субъективное ощущение звука. Для звуковой частоты 1000 Гц децибелы и фоны численно равны. По мере увеличения интенсивности звука и при уровне более 80 фон громкость звука определяется фактически его силой независимо от частоты. Шкала уровней громкости не является натуральной шкалой, т.е., например, изменение уровня громкости в 2 раза не означает, что субъективное ощущение громкости звука изменяется во столько же раз. Для оценки субъективного восприятия громкости шума или звука введена шкала фонов. Громкость (в фонах) определяется по формуле:

(2.5.7)

где L1 – уровень громкости (фон).

Например, требуется сравнить по громкости 2 звука с уровнем громкости 60 и 80 фон. По формуле 2.5.7. находим:

и

Таким образом, второй звук воспринимается слуховым аппаратом человека как звук в 2 раза более громкий, чем первый(8: 4).

Шум в производстве и в быту отрицательно влияет на организм человека, приводит к снижению производительности труда.

Устойчивый постоянный шум оказывает меньшее влияние на организм человека, чем нерегулярно возникающий высокочастотный. Шум способствует быстрому наступлению у человека чувства усталости. Шум с уровнем интенсивности более 60 дБ тормозит нормальную пищеварительную деятельность желудка. При шуме 80-90 дБ число сокращений желудка в минуту уменьшается на 37%. Установлено, что при интенсивности шума более 60 дБ выделение слюны и отделение желудочного сока понижается на 44%. Временное, а иногда и постоянное повышение кровяного давления, повышенная раздражительность, понижение работоспособности, душевная депрессия и т.п. являются следствием действия шума. Неопределенные шумы, не доходящие до сознания, также вызывают истощение центральной нервной системы, в результате чего они могут служить причиной незаметных до поры нарушений в организме.

У человека, находящегося в течение 6-8 часов под воздействием шума интенсивностью 90 дБ, наступает умеренное понижение слуха, исчезающее примерно через 1 ч после его прекращения. Шум, превышающий 120 дБ, очень быстро вызывает у человека усталость и заметное понижение слуха. В каждом отдельном случае степень потери слуха и длительность периода восстановления пропорциональны уровню интенсивности и длительности воздействия.

При большой интенсивности шум не только влияет на слух, но и оказывает другое воздействие (головная боль, плохая восприимчивость речи), порой чисто психологическое воздействие на человека. Все части тела испытывают при этом постоянное давление или ощущение порыва ветра; в костях черепа и зубах точно так же, как и в мягких тканях носа и горла, возникают вибрации. При уровне шума 140 дБ (порог болевого ощущения) и выше ощущение давления усиливается и распространяется по всему телу, а грудная клетка, мышцы ног и рук начинают вибрировать. Когда уровень интенсивности шума достигнет 160 дБ, может произойти разрыв барабанной перепонки.

Продолжительный и сильный шум вредно отражается на здоровье и работоспособности человека. Продолжительное действие шума вызывает общее утомление, может постепенно привести к потере слуха и к глухоте. Под потерей слуха (ССБТ, ГОСТ 12.4.062-78) понимают постоянное смещение порога слышимости на данной частоте, т.е. необратимое (стойкое) нижение остроты слуха от воздействия шума. ГОСТ 12.4.062-78 для определения потерь слуха устанавливает 3 метода: на 8-ми частотах; на 4-х частотах; на 2-х частотах.

Оценка результатов производится по среднему арифметическому значению величин потерь слуха отдельно для правого (0) и левого (Х) уха на речевых частотах 500, 1000, 2000 Гц:

дБ дБ

Если потери слуха на речевых частотах равны 10-20 дБ, то это легкое снижение слуха (1 степень); при потере слуха – 21-30 дБ наблюдается умеренное снижение слуха (2 степень); если снижение слуха – 31 дБ и более, то наблюдается значительное снижение слуха (3 степень). Действуя на центральную нервную систему, шум оказывает влияние на деятельность всего организма человека: ухудшается зрение, деятельность органов дыхания и кровообращения, повышается кровяное давление. Шум ослабляет внимание и затормаживает психологические реакции. По этим причинам шум способствует возникновению несчастных случаев и ведет к снижению производительности труда.

Шум усиливает действие профессиональных вредностей: на 10-15% повышает общую заболеваемость работающих, снижает производительность труда, особенно сложного (умственного). Для сохранения производительности при повышении шума с 70 до 90 дБ рабочий должен затратить на 10-20% больше физических и нервных усилий. Действие шума на организм возрастает при повышении напряженности и тяжести труда.

При систематическом воздействии сильного шума и при недостаточном времени отдыха, когда за время отдыха слух не успевает полностью восстановиться, наступает стойкое ослабление слуха. Шумы со сплошными спектрами являются менее раздражающими, чем шумы, содержащие тональные составляющие. Если источники шума одинаковые по интенсивности (когда L1 = L2 = Ln), то:

(2.5.8)

где Lm – уровень интенсивности шума 1-го источника, дБ;

N – количество одинаковых источников шума.

Если они разные, то:

где L1, L2, Ln – уровни звукового давления, создаваемые в расчетной точке, а 1, 2 … n – источники шума.

Следует учитывать:

Если один источник шума создает уровень звукового давления 90 дБ, а другой – 84 дБ, то их суммарный уровень не равен 174 дБ, а всего примерно 91 дБ (добавим к уровню 90 дБ – 1 дБ). Из этого следует, что для успешного снижения шума необходимо, в первую очередь, выявить и заглушить наиболее интенсивный источник шума, так как добавка шумов меньшей интенсивности незначительны.

При наличии множества примерно одинаковых источников шума устранение одного или двух из них, практически не снижает общего шума.

Так, например, если вместо 10 одинаковых источников оставить 6, то уровень шума снизится всего на 2 дБ.

Снижение уровня звукового давления на каждые 10 дБ соответствует уменьшению физиологически воспринимаемой человеком громкости звука в 2 раза: например, шум в 60 дБ вдвое тише, чем шум в 70 дБ.

Звуковые волны в помещении, многократно отражаясь от стен, потолка, производственного оборудования, увеличивают общий шум на 5-15 дБ.


Адаптации (табл. 2.1.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности. Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека. Оптимальные условия микроклимата создаются для...

Декодирования состоит в получении k - элементной комбинации из принятого n - разрядного кодового слова при одновременном обнаружении или исправлении ошибок. Основные параметры помехоустойчивых кодов: Длина кода - n; Длина информационной последовательности - k; Длина проверочной последовательности - r=n-k; Кодовое расстояние кода - d0; Скорость кода - R=k/n; Избыточность кода - R ...

Персонала и населения в чрезвычайных ситуациях и при необходимости принимать участие в проведении спасательных и других неотложных работ при ликвидации последствий чрезвычайных ситуаций. В курсе «Безопасность жизнедеятельности» в равных пропорциях изучаются общие вопросы охраны окружающей среды, чрезвычайных ситуаций, гражданской защиты и охраны труда. 2. Обеспечение комфортных условий...

Параметров модели транзистора, зависимости этих параметров от температуры и конструкции, рассмотрены методы экстракции параметров модели из экспериментальных характеристик. Анализ PSpice модели БТ показал, что наряду с достоинствами этой модели есть и существенные недостатки. В целом модель биполярного транзистора в PSpice может с высокой точностью и в широком диапазоне напряжений, токов и...

Рис. 6.3. Гигиенические нормы вибраций: 1, а - транспортная вертикальная вибрация; 1, б - транспортная горизонтальная вибрация; 2 - транспортно-технологическая вибрация (вертикальная и горизонтальная); 3, а - технологическая вибрация в помещениях с источниками вибрации; 3, б - то же в помещениях без источников вибрации; 3, в - то же в административных помещениях; 4 - локальная вибрация Рис. 6.4. График затухающих колебаний Рис. 6.5. Виброизоляционные амортизаторы: а - комбинированный пружинно-резиновый виброизолятор; б - резиновый виброизолятор; в - чашечный виброизолятор

С физической точки зрения звук - это механические колебания, распространяющиеся в виде волн в газообразной, жидкой или твердой среде. Звуковые волны возникают при нарушении стационарного состояния среды под воздействием на нее какой-либо возмущающей силы.

В то же время шумом принято считать всякий нежелательный для человека звук. Таким образом, звуковые волны могут нести как полезную для оператора информацию, например, о ходе технологического процесса, так и оказывать отрицательное (а иногда и вредное) воздействие.

Источником звуковых колебаний обычно является колеблющееся тело, которое преобразует какую-либо форму энергии в колебания. Этот процесс может представлять собой механическое воздействие на твердое тело, сообщение колебаний воздушному столбу под действием струи сжатого воздуха (свисток или труба) или электромагнитное воздействие на стальную мембрану (электромеханический источник, например телефон) или на кристалл (пьезоэлектрический источник).

Звуковые колебания характеризуются следующими физическими параметрами.

Скорость распространения звуковой волны - зависит от характеристик среды. При нормальных атмосферных условиях (Т = 20С и пометка">звуковым полем . Давление и скорость движения частиц воздуха в каждой точке звукового поля изменяются во времени. Звуковые волны возбуждают колебания частиц воздушной среды, в результате чего изменяется атмосферное давление. Это атмосферное давление по сравнению с давлением, существующим в невозмущенной среде, называют звуковым давлением (р) и измеряют в пометка">интенсивностью , или силой звука в данной точке.

где формула" src="http://hi-edu.ru/e-books/xbook908/files/kg-m2.gif" border="0" align="absmiddle" alt="; с - скорость распространения звука в этой среде, м/с.

Произведение пометка">z или акустическим сопротивлением среды. Его значение для данной среды может быть принято постоянным..gif" border="0" align="absmiddle" alt=" и с = 344 м/с, получим z = 443 формула" src="http://hi-edu.ru/e-books/xbook908/files/155-1.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" раз, а по интенсивности в подсказка"> (дБ).

где I и p - соответственно интенсивность и звуковое давление в данной точке; формула" src="http://hi-edu.ru/e-books/xbook908/files/p-o.gif" border="0" align="absmiddle" alt=" - их пороговые значения, соответствующие вышеприведенным значениям для порога слышимости.

Использование шкалы децибел весьма удобно, так как весь диапазон слышимых звуков от порога слышимости до болевого ощущения, составляет 140 дБ.

Величина уровня интенсивности звука используется при акустических расчетах, а уровня звукового давления - при измерении шума и оценки его воздействия на человека.

В случае, когда в данную точку попадает шум от нескольких источников, складывают их интенсивности, но не уровни.

Если имеется п одинаковых источников шума с уровнем звукового давления, создаваемого каждым из них формула" src="http://hi-edu.ru/e-books/xbook908/files/156-1.gif" border="0" align="absmiddle" alt="

Из этой формулы видно, что два одинаковых источника вместе создадут уровень шума на 3дБ больший, чем каждый в отдельности (так как lg2 =
= 0,3). Кроме того, при большом числе одинаковых источников устранение лишь нескольких из них практически не ослабит суммарный шум. Если же на рабочее место попадает шум от разных по интенсивности источников, то в первую очередь необходимо бороться с шумом от наиболее мощного.

Область слышимых звуков ограничивается не только определенным частотным диапазоном (20-20000 Гц), но и определенными предельными значениями звуковых давлений. На рис. 6.1
представлена доступная нормальному уху человека область слухового восприятия. Нижняя кривая представляет собой порог слышимости, она соответствует самым слабым звукам. Верхняя кривая соответствует громким звукам, восприятие которых вызывает болевое ощущение. Кривые порога слышимости и болевого порога ограничивают область слышимости. Воспринимаемые человеком звуки находятся в этой области. Как видно из рисунка, порог слышимости и болевой порог существенно изменяются с изменением частоты. Ухо наиболее чувствительно к частотам 5-10 кГц. При повышении и понижении частоты значение порога слышимости растет, особенно это заметно на низких частотах. По этой причине высокочастотные звуки более неприятны для человека, чем низкочастотные (при одинаковых уровнях звукового давления).

При нормировании и для оценки воздействия шума на человеческий организм используют спектральные характеристики шума. Под спектром шума понимают распределение уровня звукового давления (или уровня звуковой мощности) в пределах диапазона слышимых звуков, т.е. от 20 до 20000 Гц. Весь диапазон разбивают на интервалы (полосы), которые характеризуются граничными значениями частот формула" src="http://hi-edu.ru/e-books/xbook908/files/f-v.gif" border="0" align="absmiddle" alt=" (верхняя граничная частота). В практике нормирования шума машин приняты октавные и 1/3-октавные полосы частот..gif" border="0" align="absmiddle" alt=" Вместо того, чтобы характеризовать интервал двумя граничными частотами, используют понятие среднегеометрической частоты формула" src="http://hi-edu.ru/e-books/xbook908/files/(f-cg);.gif" border="0" align="absmiddle" alt=" 31,5, 63, 125 ,..., 8000 Гц. Аналогично поступают и с 1/3-октавными полосами частот. Предпочтительные значения среднегеометрических частот, которые следует применять при акустических исследованиях установлены в ГОСТ 12090 «Частоты для акустических измерений. Предпочтительные ряды». В соответствии с применяемыми частотными интервалами введены понятия октавного и третьоктавного уровней звукового давления.

Для оценки общего уровня звукового давления вводят частотную коррекцию полосы пропускания шумомера. Кривые А, В, С и D, определяющие частотную характеристику прибора, представлены на рис. 6.2
. Получаемые при их использовании значения общего уровня звукового давления получили названия соответственно: уровень звука формула" src="http://hi-edu.ru/e-books/xbook908/files/B-LpB.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt="

Использование подобной частотой коррекции вызвано тем, что человеческое ухо обладает неодинаковой чувствительностью к звукам различной частоты. Поэтому, для более объективной оценки производственных шумов, осуществляется коррекция частотной характеристики измерительных устройств в соответствии с особенностями слухового восприятия. Наиболее точно эти особенности отражены кривой А (рис. 6.2), поэтому в ГОСТ 12.1.003 «Шум. Общие требования безопасности» и санитарных нормах СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки» для нормирования производственного шума использован уровень звука А , а в ГОСТ 30691 «Шум машин. Заявление и контроль шумовых характеристик» в качестве одной из шумовых характеристик, подлежащих обязательному заявлению в технической документации на машины принят корректированный по А уровень звуковой мощности выделение">Шум уровня 35-50 дБ оказывает в основном психологическое воздействие. Однако при длительном воздействии он может вызвать нарушение сна, усталость, понижение работоспособности.

Шум уровня 50-65 дБ вызывает раздражение, однако его последствия также носят лишь психологический характер (при длительном воздействии возможны изменения в вегетативной нервной системе). Особенно отрицательно сказывается воздействие шума малой интенсивности на умственной работе. Кроме того, психологическое воздействие шума зависит и от индивидуального отношения к нему. Так, шум, производимый самим человеком, не беспокоит его, в то время как небольшой посторонний шум может вызывать сильное раздражение.

При уровне шума 65-90 дБ возможно его физиологическое воздействие. Пульс и давление крови повышаются, сосуды сужаются, что снижает снабжение организма кровью, и человек быстрее устает. Может наблюдаться снижение порога слышимости, стресс, увеличение кожной проводимости, нарушение моторики желудочно-кишечного тракта.

Воздействие шума уровнем свыше 90 дБ приводит к нарушениям работы органов слуха, усиливается его влияние на систему кровообращения. При такой интенсивности ухудшается деятельность желудка и кишечника, появляются ощущения тошноты, головная боль и шум в ушах. Серьезным признаком ухудшения слуха, является ограниченность восприятия отдельных элементов разговорной речи. Во избежание потери слуха необходимо распознать его нарушение задолго до того, как выявится ограниченность в разборчивости речи, ибо при прогрессирующей стадии нарушения слуха медицинская помощь почти невозможна. Для исследования состояния слуха у людей, работающих в шумных цехах, необходимо проводить регулярные аудиометрические измерения, и по мере выявления каких-либо искажений порога слышимости принимать соответствующие меры.

При уровне шума 120 дБ и выше (болевой порог) он может механически воздействовать на органы слуха - лопаются барабанные перепонки, нарушаются связи между отдельными частями внутреннего уха. В результате может наступить полная потеря слуха. Шум уровнем свыше 120 дБ оказывает механическое воздействие не только на органы слуха, но и на весь организм. Звук, проникая через кожу, вызывает механическое колебание тканей, в результате чего происходит разрушение нервных клеток, разрывы мелких кровеносных сосудов и др.

Физиологическое воздействие на организм человека могут оказывать и звуки, частота которых лежит за пределами восприятия органами слуха, т.е. инфра- и ультразвуки.

Инфразвук возникает при работе технологического оборудования или может представлять собой побочный эффект работы электрооборудования. Инфразвуковые колебания воспринимаются как физическая нагрузка: возникает нарушение пространственной ориентации, морская болезнь, а также пищеварительные расстройства, нарушения зрения, головокружение, нарушается периферическое кровообращение. Тяжесть воздействия зависит от диапазона частот, уровня звукового давления и длительности. Колебания с частотой 7 Гц препятствуют сосредоточению внимания и вызывают ощущение усталости, головную боль и тошноту. Наиболее опасны колебания частотой 8 Гц. Они могут вызывать явление резонанса системы кровообращения, приводящего к перегрузке сердечной мышцы, сердечному приступу или даже к разрыву некоторых кровеносных сосудов. Инфразвук небольшой интенсивности может служить причиной повышенной нервозности, вызывать депрессию.

Ультразвук представляет собой колебания упругой среды, имеющие одинаковую со звуком физическую природу, но отличающиеся более высокой частотой. Она значительно превышает верхнюю границу восприятия и составляет более 20000 Гц. У работающих с ультразвуковыми установками нередко наблюдаются функциональные нарушения нервной системы, изменения давления и состава крови. Часты жалобы на головные боли, быструю утомляемость, потерю слуховой чувствительности.

Вибрация. Вредное воздействие на организм оказывает и вибрация, возникающая при работе технологического оборудования.

Согласно ГОСТ 24346-80 «Вибрация. Термины и определения» под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений, по крайней мере, одной координаты.

Физическими характеристиками вибрации являются: амплитуда вибросмещения X - наибольшее отклонение колеблющейся точки от положения равновесия; амплитуда колебательной скорости V - максимальное значение скорости колеблющейся точки; амплитуда колебательного ускорения А - максимальное значение ускорения колеблющейся точки; частота колебаний f.

Вибрацию, так же, как и шум, принято оценивать в уровнях вибросмещения, виброскорости, виброускорения по отношению к их пороговым значениям: вибросмещения формула" src="http://hi-edu.ru/e-books/xbook908/files/162-1.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt="

где формула" src="http://hi-edu.ru/e-books/xbook908/files/162-4.gif" border="0" align="absmiddle" alt=" м/с, а при скорости 1 м/с возникают болевые ощущения.

При непродолжительных воздействиях вибрации работник преждевременно утомляется, и производительность его труда снижается. Длительное воздействие вибрации может вызвать профессиональное заболевание - виброболезнь.

Особенно вредна вибрация с частотой, равной резонансной частоте колебаний тела работающего или отдельных его органов. Дело в том, что части тела и внутренние органы человека (голова, сердце, желудок и др.) можно рассматривать как колебательные системы с определенной массой, соединенные между собой упругими элементами. Частота собственных колебаний этих систем лежит в диапазоне 2-30 Гц. Воздействие на организм человека внешних колебаний с такими же частотами вызывает резонансные колебания внутренних органов, их механические повреждения и даже разрывы.

В зависимости от способа передачи вибрации телу человека различают общую вибрацию, передающуюся на тело сидящего или стоящего человека через опорные поверхности тела, и локальную , передающуюся через руки.

Общая вибрация оказывает неблагоприятное воздействие на нервную систему, вестибулярный аппарат, сердечно-сосудистую систему, вызывает нарушения обмена веществ.

По источнику возникновения вибрации различают:

  • общую вибрацию 1 категории - транспортную вибрацию, воздействующую на операторов подвижных машин и транспортных средств при их движении по местности и дорогам;
  • общую вибрацию 2 категории - транспортно-технологическую вибрацию, воздействующую на операторов машин, перемещающихся только по специально подготовленным поверхностям производственных помещений и промышленных площадок;
  • общую вибрацию 3 категории - технологическую вибрацию, воздействующую на операторов стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. В зависимости от характеристики рабочих мест эта категория подразделяется на типы 3а, 3б, 3в.
  • общую вибрацию в жилых помещениях и общественных зданиях от внешних источников: городского рельсового транспорта (мелкого залегания и открытые линии метрополитена, трамвай, железнодорожный транспорт) и автотранспорта; промышленных предприятий и передвижных промышленных установок (при эксплуатации гидравлических и механических прессов, поршневых компрессоров, бетономешалок и др.);
  • общую вибрацию в жилых помещениях и общественных зданиях от внутренних источников: инженерно-технического оборудования зданий и бытовых приборов (лифты, вентиляционные системы, насосные пылесосы, холодильники и т.п.), а также встроенных предприятий коммунально-бытового обслуживания, котельных и т.д.

Вибрации различают также по направлению воздействия, по характеру спектра, частотным и временным характеристикам
(СН 2.2.4/2.1.8.566-96 «Производственная вибрация, вибрация в помещениях жилых и общественных зданий. Санитарные нормы»).

Степень и характер воздействия вибрации на организм человека зависят от вида вибрации, ее параметров и направления воздействия.

Наиболее распространены заболевания, вызванные локальной вибрацией. При работе с ручными машинами, вибрация которых наиболее интенсивна в среднечастотной области спектра, возникают в основном заболевания, сопровождающиеся спазмом периферических сосудов. Местная вибрация может вызывать ухудшение кровообращения кистей рук, пальцев, предплечья и сосудов сердца. Это, в свою очередь, понижает чувствительность кожи, вызывает отложение солей, окостенение сухожилий мышц в кистях рук и пальцах. Следствием этого является деформация и снижение подвижности суставов. Так же, как и при общей вибрации, нарушается деятельность сердца и центральной нервной системы. Особенно чувствителен организм к вертикальным вибрациям, когда колебания передаются от ног к голове.

При частоте колебаний тела работающего 38 Гц острота зрения снижается примерно на 25%, при частоте 50-80 Гц нарушается нормальная работа мышц. Вибрация в диапазоне 36-600 Гц может привести к различным заболеваниям рук. При вибрационной болезни появляются головные боли, повышенная утомляемость, боли в суставах и т.д. Женщины более чувствительны к вибрации, чем мужчины. Степень воздействия вибрации на организм работающих зависит как от частоты колебаний, так и от их амплитуды. Например, на частоте 60-70 Гц вибрация с амплитудой до 0,01 мм практически не мешает работать и не ведет к каким-либо патологическим изменениям в организме; колебания с амплитудой от 0,01 до 0,02 мм отвлекают от работы и раздражают; при амплитуде более 0,3 мм создаются невозможные условия для работы.

Нормирование шума. Учитывая большие технические трудности снижения уровня шума при выполнении производственных процессов, приходится ориентироваться не на уровни шума, вызывающие раздражение и утомление, а на такие допустимые уровни, при которых исключается возможность заболеваний работающих.

Нормируемые параметры шума на рабочих местах определены СН 2.2.442.1.8.562-96. Они являются обязательными для всех министерств, ведомств, проектных организаций и предприятий. Эти нормы устанавливают предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности (табл. 6.1).

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с Руководством Р 2.2.2006-05.

Таблица 6.1

Предельно допустимые уровни звука и эквивалентные уровни звука
на рабочих местах для трудовой деятельности разных категорий
тяжести и напряженности в дБА

Категория тяжести трудового процесса
тяжелый труд 1 степени тяжелый труд 2 степени тяжелый труд 3 степени
Напряженность легкой степени 80 80 75 75 75
Напряженность средней степени 70 70 65 65 65
Напряженный труд 1 степени 60 60 - - -
Напряженный труд 2 степени 50 50 - - -
" Безопасность Жизнедеятельности " На тему: «Шум и его влияние на организм. Предупреждение вредного действия шума на производстве»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН

ФЕРГАНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра «Химические технологии»

по дисциплине

" Безопасность Жизнедеятельности "

На тему: «Шум и его влияние на организм. Предупреждение вредного действия шума на производстве »

ВЫПОЛНИЛ: студент гр. 58-03 ЭМЭ

Юсупов Д.

ПРИНЯЛ: Домуладжанов И.

Фергана – 2007 г.

План реферата:


  1. Физическая характеристика шума, его частотная характеристика.

  1. Предельно допустимые уровни шума.

  1. Патогенез шумовой болезни.

  1. Клинические проявления шумовой болезни.

  1. Меры по предупреждению вредного воздействия шума.

  1. Список использованной литературы

Шум – беспорядочное сочетание различных по силе и частоте звуков; способен оказывать неблагоприятное воздействие на организм. Источником шума является любой процесс, вызывающий местное изменение давления или механические колебания в твердых, жидких или газообразных средах. Действие его на организм человека связано главным образом с применением нового, высокопроизводительного оборудования, с механизацией и автоматизацией трудовых процес­сов: переходом на большие скорости при эксплуатации различных станков и агрегатов. Источниками шума могут быть двигатели, насосы, компрессоры, турбины, пневматические и электрические инструменты, молоты, дробилки, станки, центрифуги, бункеры и прочие установки, имеющие движущиеся детали. Кроме того, за последние годы в связи со значительным развитием городского транспорта возросла интенсивность шума и в быту, поэтому как неблагоприятный фактор он приобрел большое социальное значе­ние.

Шум имеет определенную частоту, или спектр, выражаемый в герцах, и интенсивность – уровень звукового давления, измеряемый в децибелах. Для человека область слышимых звуков определяется в интервале от 16 до 20 000 Гц. Наиболее чувствителен слуховой анализатор к восприятию звуков частотой 1000-3000 Гц (речевая зона).

Измерение, анализ и регистрация спектра шума производятся специаль­ными приборами - шумомерами и вспомогательными приборами (са­мописцы уровней шума, магнитофон, осциллограф, анализаторы стати­стического распределения, дозимет­ры и др.). Поскольку ухо менее чув­ствительно к низким и более чувст­вительно к высоким частотам, для получения показаний, соответствую­щих восприятию человека, в шумомерах используют систему коррек­тированных частотных характери­стик - шкалы А, В, С, D и линей­ную шкалу, которые отличаются по восприятию. В практике применяет­ся в основном шкала А.

Нормируемыми параметрами шума являются уровни звукового давле­ния в октавных полосах со средне­геометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и эквивалентный (по энергии) уровень звука в децибелах (шкала А). До­пустимые уровни шума на рабочих местах не превышают соответствен­но 110, 94, 87, 81, 78, 75, 73 дБ, а по шкале А - 80 дБ.

Шум-один из наиболее распрост­раненных неблагоприятных физи­ческих факторов окружающей среды, приобретающих важное социально-гигиеническое значение, в связи с урбанизацией, а также механизацией и автоматизацией технологических процессов, дальнейшим развитием дизелестроения, реактивной авиации, транспор­та. Например, при запуске реактивных двигателей самолетов уровень шума колеблется от 120 до 140 дБ при клепке и рубке листовой стали - от 118 до 130 дБ, работе деревообра­батывающих станков-от 100 до 120 дБ, ткацких станков-до 105 дБ; бытовой шум, связанный с жизне­деятельностью людей, составляет 45-60 дБ.

Для гигиенической оценки шум подразделяют: по характеру спектра - на широко­полосный с непрерывным спектром шириной более одной октавы и то­нальный, в спектре которого имеются дискретные тона; по спектральному составу - на низкочастотный (мак­симум звуковой энергии приходит­ся на частоты ниже 400 гЦ), средне-частотный (максимум звуковой энергии на частотах от 400 до 1000 гЦ) и высокочастотный (макси­мум звуковой энергии на частотах выше 1000 гЦ); по временным харак­теристикам - на постоянный (уро­вень звука изменяется во времени но более чем на 5 Дб - по шкале А) и непостоянный. К непостоянному шуму относятся колеблющийся шум, при котором уровень звука непрерывно изменяется во времени; прерыви­стый шум (уровень звука остается постоянным в течение интервала дли­тельностью 1 сек. и более); импульс­ный шум, состоящий из одного или нескольких звуковых сигналов дли­тельностью менее 1 сек.

Патогенез. Механизм действия шума на организм сложен и не­достаточно изучен. Когда речь идет о влиянии шума, то обычно основное внимание уделяют состоянию органа слуха, так как слу­ховой анализатор в первую очередь воспринимает звуковые коле­бания и поражение его является адекватным действию шума на организм. Наряду с органом слуха восприятие звуковых колеба­ний частично может осуществляться и через кожный покров ре­цепторами вибрационной чувствительности. Имеются наблюдения, что люди, лишенные слуха, при прикосновении к источникам, ге­нерирующим звуки, не только ощущают последние, но и могут оце­нивать звуковые сигналы определенного характера.

Возможность восприятия и оценки звуковых колебаний рецепторами вибрационной чувствительности кожи объясняется тем, что на ранних этапах развития организма они осуществляли функцию органа слуха. В дальнейшем, в процессе эволюционного развития, из кожного покрова сформировался более дифференцированный орган слуха, который постепенно совершенствовался в реагировании на акустическое воздействие.

Изменения, возникающие в органе слуха, некоторые исследова­тели объясняют травмирующим действием шума на перифериче­ский отдел слухового анализатора - внутреннее ухо. Этим же обычно объясняют первичную локализацию поражения в клетках внутренней спиральной борозды и спирального (кортиева) органа. Имеется мнение, что в механизме действия шума на орган слуха существенную роль играет перенапряжение тормозного процесса, которое при отсутствии достаточного отдыха приводит к истоще­нию звуковоспринимающего аппарата и перерождению клеток, входящих в его состав. Некоторые авторы склонны считать, что длительное воздействие шума вызывает стойкие нарушения в сис­теме кровоснабжения внутреннего уха, которые являются непо­средственной причиной последующих изменений в лабиринтной жидкости и дегенеративных процессов в чувствительных элемен­тах спирального органа.

В патогенезе профессионального поражения органа слуха нель­зя исключить роль ЦНС. Патологические изменения, развивающи­еся в нервном аппарате улитки при длительном воздействии интен­сивного шума, в значительной мере обусловлены переутомлением корковых слуховых центров.

Механизм профессионального снижения слуха обусловлен из­менениями некоторых биохимических процессов. Так, гистохимические исследования спирального органа у подопытных животных, содержавшихся в условиях воздействия шума, позволили обнару­жить изменения в содержании гликогена, нуклеиновых кислот, ще­лочной и кислой фосфатаз, янтарной дегидрогеназы и холинэстеразы. Приведенные сведения полностью не раскрывают механизм действия шума на орган слуха. По-видимому, каждый из указан­ных моментов имеет определенное значение на каком-то из этапов поражения слуха в результате воздействия шума.

Возникновение неадекватных изменений и ответ на воздействие шума обусловлено обширными анатомо-физиологическими связя­ми слухового анализатора с различными отделами нервной систе­мы. Акустический раздражитель, действуя через рецепторный ап­парат слухового анализатора, вызывает рефлекторные сдвиги в функциях не только его коркового отдела, но и других органов.

Клиника. Основным признаком воздействия шума является снижение слуха по типу кохлеарного неврита. Професси­ональное снижение слуха бывает обычно двусторонним.

Стойкие изменения слуха вследствие воздействия шума, как правило, развиваются медленно. Нередко им предшествует адап­тация к шуму, которая характеризуется нестойким снижением слу­ха, возникающим непосредственно после его воздействия и исчеза­ющим вскоре после прекращения его действия. Начальные проявления профессиональной тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет. Риск потери слуха у работающих при десятилетней продолжительности воздействия шума составляет 10% при уровне 90 дБ (шкала А), 29% - при 100 дБ (шкала А) и 55% - при 110 дБ (шкала А

Адаптация к шуму рассматривается как защитная реакция слу­хового анализатора на акустический раздражитель, а утомление является предпатологическим состоянием, которое при отсутствии длительного отдыха может привести к стойкому снижению слуха. Развитию начальных стадий профессионального снижения слуха могут предшествовать ощущение звона или шума в ушах, голово­кружение, головная боль. Восприятие разговорной и шепотной ре­чи в этот период не нарушается.

Важным диагностическим методом выявления снижения слуха считают исследование функции слухового анализатора с помощью тональной аудиометрии. Последнюю следует проводить спустя не­сколько часов после прекращения действия шума.

Характерным для начальных стадий поражения слухового ана­лизатора, обусловленного воздействием шума, является повышение порога восприятия высоких звуковых частот (4000-8000 Гц). По мере прогрессирования патологического процесса повышается по­рог восприятия средних, а затем и низких частот. Восприятие ше­потной речи понижается в основном при более выраженных стади­ях профессионального снижения слуха, переходящего в тугоухость.

Для оценки состояния слуха у лиц, работающих в условиях воздействия шума различают четыре степени потери слуха (табл.1).

Таблица 1. Критерии оценки слуховой функции, разработанные В.Е.Остапович и Н.И.Пономаревой для лиц, работающих в условиях шума и вибрации.


Степень потери слуха

Тотальная пороговая аудиометрия

Восприятие шепотной речи, м

потери слуха на звуковые частоты 500, 1000 и 2000 Гц, дБ (среднее арифметическое)

потеря слуха на 4000 Гц и пределы возможного колебания, дБ

I. Признаки воздействия шума на орган слуха

До 10

50±20

5±1

II. Кохлеарный неврит с легкой степенью снижения слуха

11-12

60±20

4±1

III. Кохлеарный неврит с умеренной степенью снижения слуха

21±30

65±20

2±1

IV. Кохлеарный неврит со значительной степенью снижения слуха

31±45

70±20

1±0,5

Особое место в патологии органа слуха занимают поражения, обусловленные воздействием сверхинтенсивных шумов и звуков. Их кратковременное действие может вызвать полную гибель спи­рального органа и разрыв барабанной перепонки, сопровождающи­еся чувством заложенности и резкой болью в ушах. Исходом баротравмы нередко бывает полная потеря слуха. В производственных условиях такие случаи встречаются чрезвычайно редко, в основном при аварийных ситуациях или взрывах.

Функциональные нарушения деятельности нервной и сердечно­сосудистой системы развиваются при систематическом воздей­ствии интенсивного шума, развиваются преимущественно по типу астенических реакций и астеновегетативного синдрома с явления­ми сосудистой гипертензии. Указанные изменения нередко возни­кают при отсутствии выраженных признаков поражения слуха. Ха­рактер и степень изменений нервной и сердечно-сосудистой систе­мы в значительной мере зависят от интенсивности шума. При воз­действии интенсивного шума чаще отмечается инертность вегета­тивных и сосудистых реакций, а при менее интенсивном шуме пре­обладает повышенная реактивность нервной системы.

В неврологической картине воздействия шума основными жа­лобами являются головная боль тупого характера, чувство тяжести и шума в голове, возникающие к концу рабочей смены или после работы, головокружение при перемене положения тела, повышен­ная раздражительность, быстрая утомляемость, снижение трудо­способности, внимания, повышенная потливость, особенно при волнениях, нарушение ритма сна (сонливость днем, тревожный сон в ночное время). При обследовании таких больных нередко обна­руживают снижение возбудимости вестибулярного аппарата, мы­шечную слабость, тремор век, мелкий тремор пальцев вытянутых рук, снижение сухожильных рефлексов, угнетение глоточного, неб­ного и брюшных рефлексов. Отмечается легкое нарушение болевой чувствительности. Выявляются некоторые функциональные вегета­тивно-сосудистые и эндокринные расстройства: гипергидроз, стой­кий красный дермографизм, похолодание кистей и стоп, угнетение и извращение глазосердечного рефлекса, повышение или угнетение ортоклиностатического рефлекса, усиление функциональной актив­ности щитовидной железы. У лиц, работающих в условиях более интенсивного шума, наблюдается снижение кожно-сосудистой ре­активности: угнетаются реакция дермографизма,пиломоторный рефлекс, кожная реакция на гистамин.

Изменения сердечно-сосудистой системы в начальных стадиях воздействия шума носят функциональный характер. Больные жалуются на неприятные ощущения в области сердца в виде пока­лываний, сердцебиения, возникающие при нервно-эмоциональном напряжении. Отмечается выраженная неустойчивость пульса и артериального давления, особенно в период пребывания в условиях шума. К концу рабочей смены обычно замедляется пульс, повыша­ется систолическое и снижается диастолическое давление, появля­ются функциональные шумы в сердце. На электрокардиограмме выявляются изменения, свидетельствующие об экстракардиальных нарушениях: синусовая брадикардия, брадиаритмия, тенденция к замедлению внутрижелудочковой или предсердно-желудочковой проводимости. Иногда наблюдается наклонность к спазму капил­ляров конечностей и сосудов глазного дна, а также к повышению периферического сопротивления. Функциональные сдвиги, возни­кающие в системе кровообращения под влиянием интенсивного шума, со временем могут привести к стойким изменениям сосуди­стого тонуса, способствующим развитию гипертонической болезни.

Изменения нервной и сердечно-сосудистой систем у лиц, рабо­тающих в условиях шума, являются неспецифической реакцией организма на воздействие многих раздражителей, в том числе шу­ма. Частота и выраженность их в значительной мере зависят от наличия других сопутствующих факторов производственной среды. Например, при сочетании интенсивного шума с нервно-эмоцио­нальным напряжением часто отмечается тенденция к сосудистой гипертензии. При сочетании шума с вибрацией нарушения перифе­рического кровообращения более выражены, чем при воздействии только шума.

Доказано, что шум и напряжен­ность труда биологически эквива­лентны по своему воздействию на нервную систему. На примере изу­чения разных профессий установле­на величина физиолого-гигиенического эквивалента шума и напряженности нервно-эмоционального труда, которая находится в пределах 7- 13 дБ (шкала А) на одну категорию напряженности.

Защита. Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проекти­рования, строительства и эксплуа­тации производственных предприя­тий, машин и оборудования. В це­лях повышения эффективности борь­бы с шумом введены обя­зательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказываю­щих вредное воздействие на окружа­ющую среду и отрицательно вли­яющих на здоровье людей.

Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источ­нике за счет изменения технологии и конструкции машин. К мерам это­го типа относятся замена шумных процессов бесшумными, ударных - безударными, например замена клепки - пайкой, ковки и штамповки обра­боткой давлением; замена металла в некоторых деталях незвучными ма­териалами, применение виброизоля­ции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источни­ком повышенного шума, устанавли­вают в специальные помещения, а пульт дистанционного управления размещают в малошумном помеще­нии. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых ма­териалов, покрытых перфорирован­ными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.

Пртивошумы – средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.

Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. «Беруши» – коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала.

Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.

Противошумные шлемы – самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.

Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периоди­ческие медицинские осмотры. Таким осмотрам подлежат лица, ра­ботающие на производствах, где шум превышает предельно допус­тимый уровень (ПДУ) в любой октавной полосе.

Медицинскми противопоказаниями к допуску на работу, связанную с воздействием интенсивного шума, являются следующие заболевания:


  1. Стойкое понижение слуха, хотя бы на одно ухо, любой этиологии

  2. Отосклероз и другие хронические заболевания уха с заведомо неблагоприятным прогнозом

  3. Нарушение функции вестибулярного аппарата любой этиологии, в том числе болезнь Меньера

  4. Наркомании, токсикомании, в том числе хронический алкоголизм

  5. Выраженная вегетативная дисфункция

  6. Гипертоническая болезнь (все формы)
Сроки периодических медицинских осмотров устанавливаются в зависимости от интенсивности шума. При интенсивности шума от 81 до 99 дБА - 1 раз в 24 мес, 100 дБА и выше - 1 раз в 12 мес. Первый осмотр отоларинголог проводит через б мес после предва­рительного медицинского осмотра при поступлении на работу, свя­занную с воздействием интенсивного шума. Медицинские осмотры должны проводиться с участием отоларинголога, невропатолога и терапевта.

Список использованной литературы


  1. В.Г.Артамонова, Н.Н.Шаталов “Профессиональные болезни”, Медицина, 1996

  2. Е.Ц.Андреева-Галанина и др. “Шум и шумовая болезнь”, Ленинград, 1972

  3. Г.А.Суворов, А.М.Лихницкий “Импульсный шум и его влияние на организм человека”, Ленинград, 1975

Введение

Шум на производстве неблагоприятно действует на организм человека: повышает расход энергии при одинаковой физической нагрузке, значительно ослабляет внимание работающих, увеличивает число ошибок в работе, замедляет скорость психических реакций, в результате чего снижается производительность труда и ухудшается качество работы. Шум затрудняет своевременную реакцию работающих на предупредительные сигналы внутрицехового транспорта (автопогрузчики, мостовые краны и т. п.), что способствует возникновению несчастных случаев на производстве.

Шум оказывает вредное влияние на физическое состояние человека: угнетает центральную нервную систему; вызывает изменение скорости дыхания и пульса; способствует нарушению обмена веществ, возникновению сердечно-сосудистых заболеваний, гипертонической болезни; может приводить к профессиональным заболеваниям.

Исследованиями последних лет установлено, что под влиянием шума наступают изменения в органе зрения человека (снижается устойчивость ясного видения и острота зрения, изменяется чувствительность к различным цветам и др.) и вестибулярном аппарате; нарушаются функции желудочно-кишечного тракта; повышается внутричерепное давление; происходят нарушения в обменных процессах организма и т. п.

Шум, особенно прерывистый, импульсный, ухудшает точность выполнения рабочих операций, затрудняет прием и восприятие информации. В документах Всемирной организации здравоохранения (ВОЗ) отмечается, что наиболее чувствительными к шуму являются такие операции, как слежение, сбор информации и мышление.

Шум с уровнем звукового давления 30 ... 35 дБ является привычным для человека и не беспокоит его. Повышение уровня звукового давления до 40 ... 70 дБ создает значительную нагрузку на нервную систему, вызывая ухудшение самочувствия, снижение производительности умственного труда, а при длительном действии может явиться причиной невроза, язвенной и гипертонической болезни.

Длительное воздействие шума свыше 75 дБ может привести к резкой потере слуха -- тугоухости или профессиональной глухоте. Однако более ранние нарушения наблюдаются в нервной и сердечно-сосудистой системе, других внутренних органах.

Зоны с уровнем звука свыше 85 дБ должны быть обозначены знаками безопасности. Станочников, постоянно находящихся в этих зонах, администрация цеха обязана снабжать средствами индивидуальной защиты органов слуха. Запрещается даже кратковременное пребывание в зонах с октавными уровнями звукового давления свыше 135 дБ в любой октавной полосе.

Основные характеристики шума

Шумом называют всякий неблагоприятно действующий на человека звук. Обычно шум является сочетанием звуков различной частоты и интенсивности. С физической точки зрения звук представляет собой механические колебания упругой среды. Звуковая волна характеризуется звуковым давлением р , Па, колебательной скоростью V, м/с, интенсивностью I , Вт/м 2 , и частотой -- числом колебаний в секунду f , Гц.

Звуковые колебания какой-либо среды (например, воздуха) возникают при нарушении ее стационарного состояния под воздействием возмущающей силы. Частицы среды начинают колебаться относительно положения равновесия, причем скорость этих колебаний (колебательная скорость) значительно меньше скорости распространения звуковых волн (скорости звука), которая зависит от упругих свойств, температуры и плотности среды.

Во время звуковых колебаний в воздухе образуются области пониженного и повышенного давления, которые определяют звуковое давление.

Звуковым давлением называется разность между мгновенным значением полного давления и средним давлением в невозмущенной среде.

Характеристикой источника шума служит звуковая мощность Р, которая определяется общим количеством звуковой энергии, излучаемой источником шума в окружающее пространство за единицу времени.

При распространении звуковой волны в пространстве происходит перенос энергии. Количество переносимой энергии определяется интенсивностью звука. Средний поток энергии в какой-либо точке среды в единицу времени, отнесенный к единице площади поверхности, нормальной к направлению распространения волны, называется интенсивностью звука в данной точке.

Слуховой орган человека воспринимает в виде слышимого звука колебания упругой среды, имеющие частоту примерно от 20 до 20 000 Гц, но наиболее важный для слухового восприятия интервал от 45 до 10000 Гц.

Источниками шума на машиностроительных предприятиях являются: производственное оборудование (станочное, кузнечно-прессовое и т.п.); энергетическое оборудование, компрессорные и насосные станции, вентиляторные установки, трансформаторные подстанции; продукция предприятия -- при ее испытаниях на стендах (двигатели внутреннего сгорания, авиационные двигатели, компрессоры и т. п.).

В зависимости от физической природы возникающего шума они подразделяются на источники механического, аэродинамического, электромагнитного и гидродинамического шума. Снижение шума на рабочих местах должно достигаться прежде всего за счет акустического совершенствования машин -- улучшения их шумовых характеристик.

Восприятие человеком звука зависит не только от его частоты, но и от интенсивности и звукового давления. Наименьшая интенсивность I 0 и звуковое давление Р 0 , которые воспринимает человек, называются порогом слышимости. Пороговые значения I 0 и Р 0 зависят от частоты звука. При частоте 1000 Гц звуковое давление Р 0 = 2 -10 -5 Па, 1 0 = 10 -12 Вт/м 2 . При звуковом давлении 2-10 2 Па и интенсивности звука 10 Вт/м 2 возникают болевые ощущения (болевой порог). Между порогом слышимости и болевым порогом лежит область слышимости. Разница между болевым порогом и порогом слышимости очень велика. Чтобы не оперировать большими числами, ученый А. Г. Белл предложил использовать логарифмическую шкалу. Логарифмическая величина, характеризующая интенсивность шума или звука, получила название уровня интенсивности L шума или звука, которая измеряется в безразмерных единицах белах (Б).

где I -- интенсивность звука в данной точке;

I 0 -- интенсивность звука, соответствующая порогу слышимости.

Так как интенсивность звука пропорциональна квадрату звукового давления, то для уровня звукового давления можно записать:

Ухо человека реагирует на величину в 10 раз меньшую, чем бел, поэтому распространение получила единица децибел (дБ), равная 0,1 Б, тогда

Шумовые характеристики (ШХ) источников шума -- активные уровни звуковой мощности (УЗМ) L p , дБ, и показатели направленности излучения шума G , дБ, или предельно допустимые шумовые характеристики (ПДШХ) должны быть указаны в паспорте на них, руководстве (инструкции) по эксплуатации или другой сопроводительной документации. При отсутствии таких сведений необходимо пользоваться справочными данными по шумовым характеристикам применяемой машины или ее аналога.

В соответствии с ГОСТ 12.1.003-83* шум классифицируется по спектральным и временным характеристикам.

Спектры шума подразделяются на широкополосные и тональные. Широкополосные характеризуются спектром шума шириной более одной октавы, тональные имеют в своем составе выраженные дискретные тона с превышением уровня звукового давления (в третьоктавной полосе частот) над соседними не менее чем на 10 дБ.

Для оценки и сравнения шумов, изменяющихся по времени, применяют уровни звука. Уровень звука -- это суммарный уровень звукового давления, определенного во всем частотном диапазоне. Измеряют уровень звука шумомером в децибеллах А [дБ (А)] по шкале, имеющей корректирующий контур А по низкочастотной составляющей.

По временным характеристикам шумы подразделяются: на постоянные и непостоянные, а последние, в свою очередь, делятся на колеблющиеся прерывистые и импульсные. Шум относится к постоянному, если уровень звука, характеризующий его, изменяется за восьмичасовой рабочий день (рабочую смену) не более чем на 5 дБ (А); для непостоянных шумов характерно изменение уровня звука в течение рабочего дня более чем на 5 дБ (А).

Колеблющиеся шумы характеризуются уровнем звука, непрерывно изменяющегося во времени, например шум транспортного потока. Для прерывистых шумов уровень звука изменяется ступенчато [на 5 дБ (А) и более], при этом длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более, например шум, возникающий при периодическом выпуске газа из-под поршня. Импульсные шумы -- это один или несколько звуковых сигналов каждый продолжительностью менее 1 с, воспринимаемый человеком как удары, следующие один за другим, уровни звука при этом отличаются не менее чем на 7 дБ. Для машин ударного действия характерен импульсный шум.

Шум, вибрация и ультразвук объединяются общим принципом их образования: все они являются результатом колебания тел, передаваемого непосредственно или через газообразные, жидкие и твердые среды. Отличаются они друг от друга лишь по частоте этих колебаний и различным восприятием их человеком.

Колебания с частотой от 20 до 20000 гц (герц - единица измерения частоты, равная одному колебанию в секунду), передаваемые через газообразную среду, называются звуками и воспринимаются органами слуха человека как звуки; беспорядочное сочетание таких звуков составляет шум. Колебания ниже 20 гц называются инфразвуками, а выше 20000 гц - ультразвуками; они органами слуха человека не воспринимаются, однако оказывают на него влияние. Некоторые же животные, например собаки, воспринимают на слух более высокие колебания, то есть ультразвук.

Колебания твердых тел или передаваемые через твердые тела (машины, строительные конструкции и т. п.) называются вибрацией. Вибрация воспринимается человеком как сотрясение при общей вибрации с частотой от 1 до 100 гц, а при локальной (местной)- от 10 до 1000 гц (например, при работе с виброинструментом).

Четких границ между шумом, ультразвуком и вибрацией не сущеетвует, поэтому на пограничных частотах обычно имеет место воздействие на человека двух, а иногда и всех трех вышеуказанных факторов.

Шум и его влияние на организм

Шум представляет собой беспорядочное сочетание разнообразных звуков, поэтому для понимания физических основ образования и распространения шума, его восприятия человеком и влияния на организм следует рассматривать звук как составную часть всякого шума, включая и производственный.

Колебания источника звука производят попеременное сжатие и разрежение воздуха, образуя волнообразное колебание его, распространяющееся от источника звука во все стороны в виде увеличивающихся в объеме сфер. Это называется,распространением звуковой волны. По мере израсходования на колебание воздуха сообщенной источником энергии звуковая волна постепенно затухает, поэтому чем больше энергия источника звука, тем с большей силой происходят колебания воздуха и дальше распространяется звуковая волна. От величины энергии источника звука зависит сила звука, оцениваемая звуковым давлением, которое измеряется в ньютонах на квадратный метр (Н/м 2).

Звуковые волны, встретив на пути распространения любые поверхности (твердые, жидкие), передают им эти колебания. Подобным препятствием звуковой волне может служить и орган слуха, который состоит у человека из ушной раковины со слуховым проходом (наружное ухо), барабанной перепонки, соединенной с системой слуховых косточек (среднее ухо), и так называемого кортнева органа с окончаниями слухового нерва (внутреннее ухо). Звуковая волна вызывает колебания барабанной перепонки, которые, приводя в движение систёму косточек среднего уха, передаются окончаниям (рецепторам) слухового нерва, вызывая в них соответствующие нервные импульсы, посылаемые в головной мозг. Более интенсивный звук, то есть с большей энергией колебаний, воспринимается как громкий, менее интенсивный - как тихий.

Установлено, что орган слуха человека воспринимает разность изменения звукового давления в виде кратности этого изменения, поэтому для измерения интенсивности шума используют логарифмическую шкалу в децибелах относительно порога слышимости (минимальное звуковое давление, воспринимаемое органом слуха) человека с нормальным слухом. Эта величина, равная 2*10 -5 ньютон на 1 м 2 , принята за 1 децибел (дБ).

При повышении интенсивности звука создаваемоев звуковой волной давление на барабанную перепонку на определенном уровне может вызывать болевые ощущения. Такая интенсивность звука называется порогом болевых ощущений и находится в пределах 130 дБ.

Звуковая часть колебательного спектра, как сказано выше, имеет огромный диапазон частот - от 20 до 20000 гц. Звуки различных частот даже при одинаковой их интенсивности воспринимаются по-разному. Низкочастотные звуки воспринимаются как относительно тихие; по мере увеличения частоты увеличивается громкость восприятия, но, приближаясь к высокочастотным колебаниям, и особенно к верхней границе звуковой части спектра, громкость восприятия снова падает. Наиболее хорошо ухо человека воспринимает колебания в пределах 500 - 4000 гц.

Учитывая эти особенности восприятия, для характеристики звука или шума в целом надо знать не только его интенсивность, но и спектр, то есть частоту колебаний звуковой волны.

В условиях производства, как правило, имеют место шумы различной интенсивности и спектра, которые создаются в результате работы разнообразных механизмов, агрегатов и других устройств. Они образуются вследствие быстрых вращательных движений, скольжения (трения), одиночных или повторяющихся ударов, вибрации инструментов и отдельных деталей машин, завихрений сильных воздушных или газовых потоков и т. д. Шум имеет в своем составе различные частоты, и все же каждый шум можно охарактеризовать преобладанием тех или иных частот. Условно принято весь спектр шумов делить на низкочастотные - с частотой колебаний до 350 гц, среднечастотные - от 350 до 800 гц и высокочастотные - свыше 800 гц.

К низкочастотным относятся шумы тихоходных агрегатов неударного действия, шумы, проникающие сквозь звукоизолирующие преграды (стены, перекрытия, кожухи), и т. п.; к среднечастотным относятся шумы большинства машин, агрегатов, станков и других движущихся устройств неударного действия; к высокочастотным относятся шипящие, свистящие, звенящие шумы, характерные для машин и агрегатов, работающих на больших скоростях, ударного действия, создающих сильные потоки воздуха или газов, и т. п.

Производственный шум различной интенсивности и спектра (частоты), длительно воздействуя на работающих, может привести со временем к понижению остроты слуха у последних, а иногда и к развитию профессиональной глухоты. Такое неблагоприятное действие шума связано с длительным ичрезмерным раздражением нервных окончаний слухового нерва во внутреннем ухе (кортиевом органе), в результате чего в них возникает переутомление, а затем и частичное разрушение. Исследованиями установлено, что чем выше частотный состав шумов, чем они интенсивнее и продолжительнее, тем быстрее и сильнее оказывают неблагоприятное действие на орган слуха. При чрезмерно интенсивных высокочастотных шумах, если не будут проведены необходимые защитные мероприятия, возможно поражение не только нервных,окончаний, но и костной структуры улитки, кортиева органа и иногда даже среднего уха.

Помимо местного действия - на орган слуха, шум оказывает и общее действие на организм работающих. Шум является внешним раздражителем, который воспринимается и анализируется корой головного мозга, в результате чего при интенсивном и длительно действующем шуме наступает перенапряжение центральной нервной системы, распространяющееся не только на специфические слуховые центры, но и на другие отделы головного мозга. Вследствие этого нарушается координирующая деятельность центральной нервной системы, что, в свою очередь, ведет к расстройству функций внутренних органов и систем. Например, у рабочих, длительное время подвергавшихся воздействию интенсивного шума, особен- но высокочастотного, отмечаются жалобы на головные боли, головокружение, шум в ушах, а при медицинских обследованиях выявляются язвенная болезнь, гиперто- ния, гастриты и другие хронические заболевания.