Расстройство внутриклеточных механизмов регуляции функции клеток. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

1) на уровне взаимодействия БАВ (гормонов, нейромедиаторов и др.) с рецепторами клетки. Изменение чувствительности, числа и (или) конформации молекул рецептора, его биохимического состава или липидного окружения в мембране может существенно модифицировать характер клеточного ответа на регуляторный стимул. Так, накопление токсичных продуктов СПОЛ в клетках миокарда при ишемии обусловливает изменение физико-химического состава их мембран, в том числе и цитолеммы, что сопровождается на рушением реакции сердца на нейромедиаторы вегетативной нервной системы: норадреналин и ацетилхолин, а также другие БАВ;

2) на уровне клеточных, так называемых вторых посредников (мессенджеров) нервных влияний: циклических нуклеотидов - аденозинмонофосфата (цАМФ), гуанозинмонофосфата (цГМФ), образующихся в ответ на действие «первых посредников» - гормонов и нейромедиаторов.
Примером может служить нарушение формирования мембранного потенциала в кардиомиоцитах при накоплении в них избытка цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

3) на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Виды повреждения клеток:

Повреждение клеток характеризуется развитием разнообразных изменений в них. Однако их можно объединить в несколько групп.
Дистрофии.
Дисплазии.
Типовые нарушения субклеточных структур и компонентов.
Некроз.

Дистрофии:

Дистрофии (от лат.
dys - нарушение, расстройство + греч. trophe - питаю) - это нарушения обмена веществ в клетках, сопровождающиеся расстройствами их функций, пластических процессов и структурными изменениями, ведущими к нарушению их жизнедеятельности.

Основными механизмами дистрофий являются:

1) синтез аномальных веществ в клетке, например, белково-полисахаридного комплекса амилоида;
2) избыточная трансформация одних соединений в другие, например, жиров и углеводов в белки, углеводов в жиры;
3) декомпозиция (фанероз), например, белково-липидных комплексов мембран;
4) инфильтрация клеток (и межклеточного вещества) органическими и неорганическими соединениями, например, холестерином и его эфирами стенок артерий при атеросклерозе.

К числу основных разновидностей клеточных дистрофий в зависимости от преимущественно нарушенного вида обмена веществ относят:
белковые (диспротеинозы);
жировые (липидозы);
углеводные;
пигментные;
минеральные.

Диспротеинозы:

Характеризуются изменением фихико-химических свойств белков клеток и как следствие нарушением их ферментативной и структурной функций.
Наиболее часто диспротеинозы проявляются в виде зернистой, гиалиново-капельной и гидропической дистрофии. Нередко они представляют собой последовательные этапы нарушения обмена цитоплазматических белков, приводящих к некрозу клеток.

При зернистой дистрофии в цитоплазме появляются гранулы (зерна) белка. Они образуются в результате инфильтрации (проникновения) его из межклеточной жидкости, трансформации углеводов и жиров в белки, распада (декомпозиции) липопротеидов цитоплазмы и мембран. Одной из главных общих причин зернистой дистрофии является нарушение энергообеспечения клеток.

Гиалиновая дистрофия характеризуется накоплением в цитоплазме белковых гиалиноподобных ацидофильных включений («капель»). Одновременно с этим выявляются признаки деструкции клеточных органелл. Признаки гиалиновой дистрофии наблюдаются при состояниях, вызывающих повышение проницаемости клеточных мембран.

Липидозы:

К липидозам откосят различные по химическому составу вещества, нерастворимые в воде. Липидозы проявляются либо увеличением содержания внутриклеточных липидов, либо появлением их в клетках, где они в норме отсутствуют, либо образованием липидов аномального химического состава. Липидозы, так же, как и диспротеинозы, наиболее часто наблюдаются в клетках сердца, печени, почек, мозга и носят соответствующие названия (жировая дистрофия сердца, печени, почек, мозга).

Углеводные дистрофии:

Характеризуются нарушением обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеидов (муцина, мукоидов).

«Полисахаридные» дистрофии проявляются:
1) уменьшением их содержания в клетке (например, гликогена при сахарном диабете);
2) их отсутствием или значительным снижением (агликогенозы);
3) накоплением их избытка (гликогенная инфильтрация клеток, гликогенозы).
Причиной углеводных дистрофий чаще всего являются эндокринопатии (например, инсулиновая недостаточность) или ферментопатии (отсутствие или низкая активность ферментов, принимающих участие в процессах синтеза и распада углеводов).
Углеводные дистрофии, связанные с нарушением метаболизма гликопротеидов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию. В связи с этим их называют слизистыми дистрофиями. Причинами их наиболее часто служат эндокринные расстройства (например, недостаточная продукция или низкая активность гормонов щитовидной железы), а также прямое повреждающее действие на клетки патогенных факторов.

Пигментные дистрофии (диспигментозы):

Пигменты клеток организма человека и животных принимают участие в реализации многих функций: синтез и катаболизм веществ, рецепция различных воздействий, защита от повреждающих факторов.
Клеточные пигменты являются хромопротеидами, т. е. соединениями, состоящими из белка и красящего вещества.

В зависимости от биохимического строения эндогенные клеточные пигменты разделяют следующим образом:
1) гемоглобиногенные (ферритин, гемосидерин, билирубин, гематоидин, гематин, порфирин);
2) протеиногенные, тирозиногенные (меланин, адренохром, пигменты охроноза и энтерохромафинных клеток);
3) липидогенные, липопротеиногенные (липофусцин, гемофусцин, цероид, липохромы).
Все диспигментозы делятся на несколько групп в зависимости от их происхождения, механизма развития, биохимической структуры пигмента, проявлений и распространенности.

Виды диспигментозов

По происхождению:
1. Первичные (наследственные, врожденные).
2. Вторичные, приобретенные (возникающие под действием патогенных агентов в течение постнатального периода жизни организма).

По механизму развития:
1. Обусловленные дефектами ферментов (ферментопатиями) метаболизма пигмента и (или) изменением их активности.
2. Связанные с изменением содержания и (или) активности ферментов транспорта пигментов через мембраны клетки.
3. Вызванные повреждением мембран клеток.
4. Обусловленные накоплением избытка пигментов в клетках, обладающих свойством фагоцитоза.

По биохимической структуре пигмента:
1. Гемоглобиногенные, «железозависимые».
2. Протеиногенные, тирозиногенные.
3. Липидогенные, липопротеиногенные.

По проявлениям:
1. Появление в клетке пигмента, отсутствующего в ней в норме.
2. Накопление избытка пигмента, образующегося в клетке в норме.
3. Уменьшение количества пигмента, образующегося в клетке в норме.

По распространенности:
1. Местные (регионарные).
2. Общие (распространенные).

Гемоглобиногенные диспигментозы включают гемосидероз, гемохроматоз, ге-момеланоз, порфирию, накопление избытка прямого билирубина в гепатоцитах. Большинство гемоглобиногенных пигментов относятся к продуктам катаболизма гемоглобина. Некоторые из них (ферритин, гемосидерин) образуются с участием железа, всасывающегося в кишечнике.

Часть гемоглобиногенных диспигментозов является результатом ферментопатии. К ним относятся, в частности, первичный гемохроматоз и порфирия.

Первичный гемохроматоз - заболевание, обусловленное генетическим дефектом (передается аутосомно-доминантным путем) группы ферментов, участвующих в процессах транспорта железа из полости кишечника. При этом в кровь поступает избыток железа, которое накапливается в виде ферритина и гемосидерина в клетках различных тканей и органов (печени, миокарда, кожи, желез внутренней секреции, слюнных желез и др.). Сходные изменения наблюдаются и при вторичном гемохроматозе. Он является результатом либо приобретенной недостаточности ферментов, обеспечивающих обмен пищевого железа (при алкоголизме, интоксикациях), либо - повышенного поступления железа в организм с продуктами питания или железосодержащими лекарственными препаратами, либо следствием избыточного гемолиза эритроцитов.

Порфирия характеризуется накоплением в клетках уропорфириногена I, порфобилина, порфириногенов. Одной из частых причин порфирии является дефицит или низкая кинетическая активность ферментов метаболизма порфиринов (в частности, уропорфириноген - III - косинтетазы) наследственного или приобретенного характера.

Большинство других разновидностей гемоглобиногенных диспигментозов (гемосидероз, гемомеланоз) являются следствием избыточного накопления пигметов в клетках в связи с повышенным гемолизом эритроцитов различного генеза (при инфекциях, интоксикациях, переливании иногруппной крови, резус-конфликте и др.).

Протеиногенные (тирозиногенные) диспигментозы проявляются усилением или ослаблением пигментации тканей (локального или общего характера) продуктами метаболизма тирозина.
Усиление пигментации нередко является следствием избытка в клетках меланина (меланоз, от греч. melas - темный, черный). Наблюдается при надпочечнико-вой недостаточности, обусловленной уменьшением их массы, например, при туберкулезном или опухолевом поражении, при аденоме гипофиза, гипертиреоидизме, опухолях яичников. Считают, что избыток меланина в клетках является результатом его повышенного синтеза из тирозина вместо адреналина. Процесс мелани-нообразования потенциируется АКТГ, уровень которого повышен в условиях дефицита адреналина в крови.

Накопление пигмента охроноза (от греч. ochros - желтый, желтоватый) в клетках наблюдается при первичной (наследственной) ферментопатии, характеризующейся недостаточнрстью энзимов метаболизма тирозина и фенилаланина. При этом гиперпигментация носит местный или распространенный характер. Пигмент накапливается в клетках тканей носа, ушных раковин, склер, трахеи, бронхов, сухожилий, хрящей и др.

Ослабление пигментации тканей или отсутствие пигмента в их клетках (альбинизм, от лат. albus - белый) также может быть первичного или вторичного происхождения. При альбинизме меланин отсутствует в клетках кожи, радужки глаз, в волосах. Причиной этого чаще всего является наследственно обусловленное отсутствие в клетках фермента тирозиназы. В случае местного уменьшения пигментации, например, кожи (лейкодерма, витилиго) существенное значение имеет вторичное нарушение обмена меланина в связи с нейроэндокринными нарушениями его регуляции (при гипоинсулинизме, снижении уровня гормонов пара-щитовидных желез), вследствие образования антител к меланину либо в результате повышенного разрушения меланоцитов при воспалении или некрозе тканей.

Липидогенные диспигментозы, характеризующиеся чаще всего увеличением в клетках количества пигментов липидного или липопротеидного характера (липофусцина, гемофусцина, липохромов, цероида). Все эти пигменты весьма сходны по основным физическим и биохимическим свойствам. У человека обычно встречаются различные варианты местного липофусциноза наследственного (реже) или приобретенного (чаще) происхождения.

Считается, что основными причинами приобретенного липофусциноза являются гипоксия тканей, дефицит в организме витаминов, белка, отдельных видов липидов. Наиболее часто он развивается в пожилом и старческом возрасте, у людей с хроническими «обменными» заболеваниями.
Наследственные и врожденные липофусцинозы характеризуются накоплением избытка липофусцина в клетках, сочетающимся обычно с ферментопатиями (т. е. эти липофусцинозы являются вариантом болезней накопления - тезаурис-мозов). Примерами этих болезней могут быть нейрональные липофусцинозы (отложение избытка липофусцина в нейронах, что сочетается со снижением интеллекта, зрения, слуха, развитием судорог), печеночные липофусцинозы, сочетающиеся с нарушениями обмена билирубина, обусловленными наследственными дефектами ферментов транспорта глюкоронизации желчных пигментов.

Минеральные дистрофии:

Проявляются значительным уменьшением или увеличением содержания минеральных веществ в клетках. Наибольшее значение имеют нарушения обмена соединений кальция, калия, железа, цинка, меди. Их ионизированные и молекулярные фракции участвуют в процессах регуляции проницаемости мембран клеток, активности ферментов, формирования потенциала покоя и действия, реализации действия гормонов и нейромедиаторов, электромеханического сопряжения в миоцитах и многих других клетках.

Минеральные дистрофии характеризуются накоплением избыточного содержания в клетках молекулярных или ионизированных фракций катионов (например, кальцинозы, сидерозы, отложения меди при гепатоцеребральной дистрофии) или уменьшением их содержания.

Одной из наиболее распространенных у человека разновидностей клеточных минеральных дистрофий является кальциноз - накопление («отложение») избытка солей кальция в клетках. Кальциноз может носить общий или местный характер. На «территории» клетки в наибольшей мере соли кальция накапливаются в митохондриях, лизосомах (фаголизосомах), в канальцах саркоплазматической сети. Основной причиной клеточного кальциноза является изменение физико-химических свойств гиалоплазмы клетки (например, внутриклеточный алкалоз), сочетающееся с абсорбцией кальция. Наиболее часто отмечается кальциноз клеток миокарда, эпителия почечных канальцев, легких, слизистой желудка, стенок артерий.

К числу дистрофий относят также тезаурисмозы (от греч. thesauriso - накопление, поглощение, наполнение). Они характеризуются накоплением избытка различных веществ в клетках, что сопровождается нарушением их структуры и функции, а также - интенсивности и характера метаболических и пластических процессов в них.

Практически все тезаурисмозы - результат наследственной патологии ферментов, передающихся, как правило, по аутосомно-рецессивному типу. Наследуемые изменения в генетической программе обусловливают дефект ферментов (ли-зосомальных, мембраносвязанных, свободных). Следствием этого является нарушение метаболизма в клетке, обусловливающее накопление в ней продуктов неполного или аномального расщепления субстратов.

В зависимости от биохимической структуры накапливающихся в клетках веществ тезаурисмозы разделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеидные, мукополисахаридные, муколи-пидные. Наиболее распространенными разновидностями тезаурисмозов являются липидные и гликогеновые.

Дисплазии:

Дисплазии (от лат. dys - нарушение, расстройство + греч. plasis - образую) - это общее название нарушений процесса развития (дифференцировки, специализации) клеток, проявляющихся стойким изменением их структуры и функции, что ведет к расстройству их жизнедеятельности.

Причинами дисплазий являются факторы физического, химического или биологического характера, повреждающие геном клетки. При этом нарушается генетическая программа клеток или механизмы ее реализации. Именно это обусловливает стойкие и, как правило, наследуемые от клетки к клетке изменения в отличие от дистрофий, которые нередко носят временный, обратимый характер и могут устраняться при прекращении действия причинного фактора.

Основным механизмом дисплазий является расстройство процесса дифференцировки, который заключается в формировании структурной и функциональной специализации клетки. Клеточная дифференцировка определяется в основном генетической программой. Однако реализация этой программы в существенной мере зависит от сложных взаимодействий ядра и цитоплазмы, микроокружения клетки, влияния на нее БАВ и многих других факторов. Именно поэтому даже при одном и том же изменении в геноме различных клеток проявления дисплазий могут носить «разноликий характер».

Дисплазий проявляются изменением величины и формы клеток, их ядер и других органелл, числа и строения хромосом. Как правило, клетки увеличены в размерах, имеют неправильную, причудливую форму («клетки-монстры»), соотношение различных органелл в них диспропорционально. Нередко в таких клетках обнаруживаются различные включения, признаки дистрофических процессов.

В качестве примеров клеточных дисплазий можно назвать образование мегалобластов в костном мозге при пернициозной анемии, серповидных эритроцитов при наличии патологического гемоглобина, крупных нейронов - «монстров» при поражении коры большого мозга (туберкулезный склероз), многоядерных гигантских клеток с причудливым расположением хроматина при нейрофиброматозе (болезнь Реклинхаузена). Клеточные дисплазий являются одним из проявлений атипизма опухолевых клеток.

Типовые нарушения субклеточных структур и компонентов:

Клетка представляет собой многокомпонентную систему. Она включает в себя ядро, гиалоплазму, органеллы (митохондрии, пероксиомы, рибосомы, эндоплазматическую сеть, лизосомы, пластинчатый комплекс, или комплекс Гольджи, клеточный центр, микротрубочки, микрофиламенты), метаплазматические специализированные специализированные образования (миофибриллы, нейрофибриллы, тонофибриллы, микроворсинки, десмосомы и др.); включения (трофические, секреторные, а также специфические для отдельных клеток, например, гранулы тучных клеток, или лаброцитов, содержащие серотонин, гистамин, гепарин и другие вещества). Указанные компоненты клетки окружены плазмолеммой (цитолеммой).

Повреждение клетки характеризуется большим или меньшим нарушением структуры функции всех ее компонентов. Однако при действии различных патогенных факторов могут преобладать признаки повреждения отдельных из них.

Ядро является «носителем» генетической программы клетки. Повреждение ядра сочетается с изменением его величины и формы, числа ядрышек в нем, конденсацией хроматина по периферии ядра (маргинация хроматина), нарушением двухконтурности или разрывами ядерной оболочки, слиянием ее с полоской маргинации хроматина, появлением включений, спутников ядра и др.

Митохондрии. Эти органеллы участвуют во многих внутриклеточных процессах. Главными из них являются окисление, сопряженное с фосфорилированием, ведущее к образованию АТФ и регуляции внутриклеточного содержания кальция (митохондрии обладают высокой кальциевой емкостью), калия, ионов водорода.

При действии патогенных факторов отмечается изменение общего числа митохондрий, а также структуры отдельных органелл. Уменьшение числа митохондрий по отношению к общей массе клетки, в частности в печени, наблюдается при длительном голодании, после облучения организма, при сахарном диабете.

Стереотипными для действия большинства повреждающих факторов изменениями отдельных митохондрий являются уменьшение или увеличение их размеров и изменение формы. Многие патогенные воздействия на клетку (гипоксия, эндо- и экзогенные токсические агенты, в том числе лекарственные препараты при их передозировке, ионизирующая радиация, изменение осмотического давления) сопровождаются набуханием и вакуолизацией митохондрий, что может привести к разрыву их мембран, фрагментации и гомогенизации крист. Нередко отмечаются утрата гранулярной структуры и гомогенизация крист, утрата гранулярной структуры и гомогенизация матрикса органелл, потеря двухконтурности их наружной мембраны, отложения в матриксе органических (миелин, липиды, гликоген) и неорганических (чаще всего соли кальция) соединений. Нарушение структуры митохондрий приводит к существенному подавлению процесса дыхания в них и образования АТФ, а также к дисбалансу ионов (Са2+, К+, Н+) внутри клетки.

Лизосомы. В норме ферменты лизосом обеспечивают обновление структур клетки при их старении или повреждении, а также уничтожение чужеродных агентов в процессе фагоцитоза.
При патогенных воздействиях высвобождение и активация ферментов лизосом может привести к «самоперевариванию» (аутолизу) клетки. Повышенный выход лизосомальных гидролаз в цитоплазму может быть обусловлен механическим разрывом их мембраны или значительным повышением проницаемости («лабилизацией») последних.

Это является следствием накопления в клетках ионов водорода (внутриклеточный ацидоз), воздействия продуктов СПОЛ, токсинов и других агентов. У человека и животных нередко выявляются также первичные, наследственные нарушения функций лизосом (так называемые лизосомные болезни). Они характеризуются дефицитом и (или) снижением активности лизосомальных ферментов. Это, как правило, сопровождается накоплением в клетке избытка веществ, которые в норме метаболизируются с участием энзимов лизосом. Указанные формы лизосомальных ферментопатий являются разновидностью тезаурисмозов - болезней накопления, к которым относятся, как уже указывалось, гликогенозы, ганглиозидозы, некоторые гепатозы (сопровождающиеся накоплением в гепатоцитах липофусцина и, как правило, прямого билирубина) и др.

Рибосомы. Эти органеллы необходимы для реализации генетической программы клеток. С их участием происходит синтез белка на основе считывания информации с и-РНК. Поэтому около 40% массы рибосом составляет РНК. При действии повреждающих факторов наблюдается разрушение группировок субъединиц рибосом (полисом), состоящих обычно из нескольких рибосом - «мономеров»; уменьшение числа рибосом, отрыв органелл от внутриклеточных мембран. Эти изменения сопрвождаются снижением интенсивности синтеза белка в клетке.

Эндоплазматическая сеть. Выполняет в клетке функции накопления и распределения различных веществ (в частности, ионов кальция в миоцитах), а также участвует в инактивации химических агентов. При повреждении отмечается расширение канальцев сети, вплоть до образования крупных вакуолей и цистерн вследствие накопления в них жидкости, очаговая деструкция мембран канальцев сети, их фрагментация. Изменение структуры эндоплазматической сети может сопровождаться развитием клеточных дистрофий, нарушением распространения импульса возбуждения, сократительной функции мышечных клеток, процессов обезвреживания цитотоксических факторов (ядов, метаболитов, свободных радикалов и др.).

Пероксисомы (микротельца). Топографически тесно связаны с эндоплазматической сетью. В микротельцах содержатся различные оксидазы, участвующие в процессах окисления высших жирных кислот, углеводов, аминокислот и других (в том числе цитотоксических) субстратов расщепления перекиси водорода, различных восстановительных компонентов дыхательной цепи. При повреждениях клетки различного генеза может наблюдаться увеличение (в условиях алкогольной интоксикации, вирусной агрессии) или уменьшение (при гипоксии, действии ионизирующей радиации) числа пероксисом. Известны также первичные нарушения функций пероксисом наследственного происхождения («пероксисомные болезни»). Они характеризуются нарушением обмена веществ в результате либо дефицита и (или) дефекта отдельных ферментов пероксисом, чаще всего каталазы, либо отсутствия микротелец в клетке.

Комплекс Гольджи. Играет существенную роль в процессах транспорта веществ в клетках с высокой метаболической и секреторной активностью, особенно в железах внутренней секреции и клетках, продуцирующих слизь. В этом комплексе также синтезируется ряд веществ (полисахариды, белки), активируются ферменты, депонируются различные соединения. С его участием «генерируются» лизосомы. Повреждение комплекса Гольджи сопровождается структурными изменениями, сходными с таковыми в эндоплазматической сети. При этом нарушаются выведение из клетки продуктов жизнедеятельности, инактивация в ней токсичных соединений, что может обусловить расстройство ее функции в целом.

Микротрубочки, микрофиламенты, промежуточные филаменты (цитокератины, нейрофиламенты, глиальные нити). Составляют «скелет» клетки, обеспечивают выполнение ее опорной, транспортной, контрактильной, двигательной функций. Повреждение цитоскелета может обусловить нарушение тока секреторных гранул или жидкостей, реализации фагоцитоза, митотического деления клеток, упорядоченного движения ресничек (например, эпителия дыхательных путей или «хвоста» сперматозоида, являющегося эквивалентом реснички).

Гиалоплазма (цитоплазматический матрикс). Представляет собой жидкую слабовязкую внутреннюю среду клетки. Основными компонентами гиалоплазмы являются внутриклеточная жидкость, различные структуры: органеллы, мета-плазматические образования и включения. Действие на клетку повреждающих факторов может обусловливать уменьшение или увеличение содержания в гиалоплазме жидкости, протеолиз или коагуляцию белка, образование «включений», не встречающихся в норме.

Изменение состояния гиалоплазмы в свою очередь существенно влияет на процессы метаболизма, протекающие в ней, в связи с тем, что многие ферменты (например, гликолиза) находятся в клеточном матриксе; на функцию органелл; на процессы восприятия регулирующих и других влияний на клетку.

Прижизненное изучение клеток показало, что в гиалоплазме наблюдаются упорядоченная циркуляция внутриклеточной жидкости, а также ритмические движения органелл. Высказываются допущения, что в различных регионах клетки и ее органеллах может циркулировать разная по составу жидкость. При повреждениях клеток возможно нарушение упорядоченного характера циркуляции ци-топлазматической жидкости. Примером дисциркуляторных расстройств могут быть изменения скорости транспорта нейромедиаторов по аксонам нейронов, замедление миграции фагоцитов (вследствие медленного перемещения гиалоплазмы в псевдоподии), развитие так называемого «парциального» отека в клетках (например, отек ядра, митохондрий, миофибрилл и т. д.).

Плазмолемма. В норме выполняет защитную, барьерную, контактную, информационную, транспортную функции. При повреждении клетки указанные функции плазмолеммы страдают в большей или меньшей мере. Это обусловлено значительными изменениями ее проницаемости (чаще повышением), целостности, числа и чувствительности рецепторных структур, трансмембранных «каналов» и другими отклонениями.

Повреждение отдельной клетки (включая и отдельные ее компоненты) может нарушить межклеточные взаимодействия («общение») и «кооперацию». В основе этого лежит изменение свойств и (или) структуры плазмолеммы, а также находящихся в ней и на ней рецепторных образований, поверхностных антигенов, межклеточных стыков; отклонение от нормы «набора» и свойств метаболитов, в том числе биологически активных (медиаторов и модуляторов «общения»). Это может потенцировать степень и масштаб расстройств в уже поврежденной клетке, а также обусловить альтерацию других, интактных клеток.

Совокупность изменений субклеточных структур и их функций, клеток в целом, а также нарушение их взаимодействия и кооперации лежат в основе развития типовых патологических процессов, типовых форм патологии органов и физиологических систем, конкретных болезней и болезненных состояний.

Некроз и апоптоз:

Повреждение отдельных компонентов клетки влияет на состояние всех ее структур и процессов, поскольку они объединены в одну сбалансированную систему, включенную, в свою очередь, в тканевой ансамбль клеток. Такая интеграция позволяет ликвидировать последствия повреждения в отдельной клетке, если сила и выраженность его сравнительно малы (обратимое повреждение). Если взаимодействие субклеточных структур и координация внутриклеточных процессов под влиянием патогенного фактора нарушены, то нарушается и гомеостаз клетки, она погибает - некротизируется или подвергается апоптозу (необратимое повреждение).

Некроз (от греч. necros - мертвый) - это гибель клеток, сопровождающаяся необратимым прекращением их жизнедеятельности. Некроз нередко является завершающим этапом дистрофий, дисплазий, а также следствием прямого действия повреждающих факторов значительной силы. Изменения, предшествующие некрозу, называют некробиозом или патобиозом.

Большинство погибших клеток подвергаются аутолизу, т. е. саморазрушению структур. Основным механизмом аутолиза является гидролиз компонентов клеток и межклеточного вещества под влиянием ферментов лизосом. Этому способствует развитие ацидоза в поврежденных клетках. В процессе аутолиза принимают участие также свободные радикалы. Одним из аргументов является факт интенсификации свободнорадикальных и липопероксидных реакций в поврежденных тканях при воспалении, на определенных этапах инфаркта, опухолевого роста и при других патологических процессах.

В процессе лизиса поврежденных клеток могут принимать участие и другие клетки - фагоциты, а также микроорганизмы. В связи с этим в отличие от аутолитического механизма последний называют гетеролитическим. Таким образом, лизис некротизированных клеток (некролиз) может обеспечиваться ауто- и гетеролитическими процессами, в которых принимают участие ферменты и другие факторы как погибших, так и контактирующих с ними живых клеток.

Апоптоз (от греч. аро - отсутствие, отрицание чего-либо, ptosis - падение) -это генетически программируемый процесс прекращения жизнедеятельности и смерть клетки или группы клеток в живом организме. При этом погибшая клетка не подвергается аутолизу, а обычно поглощается и разрушается фагоцитом. Процесс апоптоза наблюдается при патологической гипертрофии тканей, воспалении, опухолевом росте; частота его нарастает по мере старения организма.

Проявления повреждения клеток:

Любое повреждение клетки вызывает в ней комплекс специфических и неспецифических изменений, выявляемых различными методами: биохимическими, физикохимическими, морфологическими и др.
Под специфическими понимают изменения свойств клеток, характерные для данного фактора при действии его на различные клетки, либо свойственные лишь данному виду клеток при воздействии на них повреждающих агентов различного характера. Так, повышение в любой клетке осмотического давления сопровождается ее гипергидратацией, растяжением мембран, нарушением их целостности.

Под влиянием разобщителей процесса окисления и фосфорилирования снижается или блокируется сопряжение этих процессов и уменьшается эффективность биологического окисления. Высокая концентрация в крови одного из гормонов коры надпочечников - альдостерона - обусловливает накопление в различных клетках избытка ионов натрия. С другой стороны, действие повреждающих агентов на определенные виды клеток вызывает специфическое для них (клеток) из менение. Например, влияние различных (химических, биологически, физических) патогенных факторов на мышечные клетки сопровождается развитием контрактуры их миофибрилл, на нейроны - формированием ими так называемого потенциала повреждения, на эритроциты - гемолизом и выходом из них гемоглобина.

Повреждение клетки всегда сопровождается комплексом и неспецифических, стереотипных, стандартных изменений в них. Они выявляются при действии разнообразных агентов. К числу часто встречающихся неспецифических проявлений альтерации клеток относятся ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и жидкости, изменение параметров мембранного потенциала, повышение сорбционных свойств клеток.

Выявление комплекса специфических и неспецифических изменений в клетках органов и тканей дает возможность судить о характере и силе действия патогенного фактора, о степени повреждения, в также об эффективности применяемых с целью лечения медикаментозных и немедикаментозных средств. Например, по изменению активности в плазме крови специфического для клеток миокардита МВ-изофермента креатинфосфокиназы и содержания миоглобина в сопоставлении с динамикой уровня ионов калия (выходящего из поврежденных кардиоцитов), изменений на ЭКГ, показателей сократительной функции различных участков миокарда можно судить о степени и масштабе повреждения сердца при его инфаркте.

Клетки - основные структурно-функциональные элементы тканей, органов и организма в целом - для выполнения своих функций поддерживают собственный гомеостаз, осуществляют обмен веществ и энергии, реализуют генетическую информацию, передают её потомству и прямо или опосредованно (через межклеточный матрикс и жидкости) обеспечивают функции организма. Любая клетка (рис. 4-1) либо функционирует в границах нормы (гомеостаз), либо приспосабливается к жизни в изменившихся условиях (адаптация), либо гибнет при превышении её адаптивных возможностей (некроз) или действии соответствующего сигнала (апоптоз).

Гомеостаз (гомеокинез) - динамическое равновесие в данной клетке, с другими клетками, межклеточным матриксом и гуморальными

Рис. 4-1. Гомеостаз, адаптация и типовые формы патологии клеток. Слева в овале - границы нормы. Существенное свойство типовых патологических процессов - их обратимость. Если степень повреждения выходит за пределы адаптивных возможностей, процесс становится необратимым (примеры - некроз, апоптоз, дисплазия, опухолевый рост).

факторами, обеспечивающее оптимальную метаболическую и информационную поддержку. Жизнь клетки в условиях гомеостаза - постоянное взаимодействие с различными сигналами и факторами.

Адаптация - приспособление в ответ на изменения условий существования клеток (в том числе на воздействие повреждающего фактора).

Гибель клетки - необратимое прекращение жизнедеятельности. Происходит либо вследствие генетически программированного процесса (апоптоз), либо в результате летального повреждения (некроз).

Типовые формы патологии клеток: дистрофии, дисплазии, метаплазия, гипотрофия (атрофия), гипертрофия, а также некроз и патологические формы апоптоза.

Повреждение Повреждающие факторы

Эффект повреждающего фактора может быть обратимым или необратимым (рис. 4-2).

Природа повреждающего фактора трояка: физическая, химическая или биологическая (включая социальную).

Генез. По происхождению повреждающие факторы подразделяют на экзогенные и эндогенные.

Рис. 4-2. Признаки обратимого и необратимого повреждения. [по 4].

Экзогенные факторы (действуют на клетку извне):

физические воздействия (механические, термические, лучевые, электрический ток);

химические агенты (кислоты, щёлочи, этанол, сильные окислители);

инфекционные факторы (вирусы, риккетсии, бактерии, эндо- и экзотоксины микроорганизмов, гельминты и др.).

Эндогенные агенты (образуются и действуют внутри клетки):

физической природы (например, избыток свободных радикалов; колебания осмотического давления);

химические факторы (например, накопление или дефицит ионов H+, K+, Ca 2 +, кислорода, углекислого газа, перекисных соединений, метаболитов и др.);

биологические агенты (например, белки, лизосомальные ферменты, метаболиты, Ig, цитотоксические факторы; дефицит или избыток гормонов, ферментов, простагландинов - Пг).

Эффекты повреждающих факторов достигаются прямо (первичные факторы повреждения) или опосредованно (при формировании цепи вторичных патологических реакций - вторичные факторы повреждения).

МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТОК

К наиболее важным механизмам клеточной альтерации относятся:

♦ расстройства энергетического обеспечения клетки;

♦ повреждение мембран и ферментов;

♦ активация свободнорадикальных и перекисных процессов;

♦ дисбаланс ионов и воды;

♦ нарушения в геноме или экспрессии генов;

♦ расстройства регуляции функций клеток.

Расстройства энергетического обеспечения клетки

Энергоснабжение клетки может расстраиваться на этапах ресинтеза, транспорта и утилизации энергии АТФ. Главная причина расстройств - гипоксия (недостаточное снабжение клеток кислородом и нарушение биологического окисления).

Ресинтез АТФ нарушается в результате дефицита кислорода и субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, а также повреждения и разрушения митохондрий (в которых осуществляются реакции цикла Кребса и со- пряжённый с фосфорилированием АДФ перенос электронов к молекулярному кислороду).

Транспорт энергии. Заключённая в макроэргических связях энергия АТФ поступает к эффекторным структурам (миофибриллы, ион-

ные насосы и др.) с помощью АДФ-АТФ-транслоказы и КФК. При повреждении этих ферментов или мембран клеток нарушается функция эффекторных структур.

Утилизация энергии может быть нарушена преимущественно за счёт уменьшения активности АТФаз (АТФаза миозина, Na+K+-АТФаза плазмолеммы, протонная и калиевая АТФаза, Са 2 +-АТФаза и др.), КФК, адениннуклеотидтрансферазы.

Повреждение мембран

Повреждение клеточных мембран происходит за счёт следующих процессов:

Активация гидролаз. Под влиянием патогенных факторов активность мембраносвязанных, свободных (солюбилизированных) и лизосомальных липаз, фосфолипаз и протеаз может значительно увеличиться (например, при гипоксии и ацидозе). В результате фосфолипиды и белки мембран подвергаются гидролизу, что сопровождается значительным повышением проницаемости мембран.

Расстройства репарации мембран. При воздействии повреждающих факторов репаративный синтез альтерированных или утраченных мембранных макромолекул (а также их синтез de novo) подавляется, что приводит к недостаточному восстановлению мембран.

Нарушения конформации макромолекул (их пространственной структуры) приводит к изменениям физико-химического состояния клеточных мембран и их рецепторов, что приводит к искажениям или потере их функций.

Разрыв мембран. Перерастяжение и разрывы мембран набухших клеток и органоидов в результате их гипергидратации (следствие значительного увеличения осмотического и онкотического давления) - важный механизм повреждения мембран и гибели клетки.

Свободнорадикальные и перекисные реакции - в норме это необходимое звено транспорта электронов, синтеза Пг и лейкотриенов, фагоцитоза, метаболизма катехоламинов и др. В свободнорадикальные реакции вовлекаются белки, нуклеиновые кислоты и, особенно, липиды, учитывая наличие большого их числа в мембранах клеток (свободнорадикальное перекисное окисление липидов - СПОЛ). При действии патогенных факторов генерация свободных радикалов и СПОЛ значительно возрастает, что усиливает повреждение клеток.

Этапы СПОЛ: образование активных форм кислорода - генерация свободных радикалов органических и неорганических веществ - продукция перекисей и гидроперекисей липидов.

Активные формы кислорода - ❖ синглетный (Ό 2) ❖ супероксидный радикал (O 2 -)

❖ пероксид водорода (H 2 O 2) ❖ гидроксильный радикал (OH -).

Прооксиданты и антиоксиданты. Интенсивность СПОЛ регулируется соотношением активирующих (прооксидантов) его и подавляющих (антиоксидантов) факторов.

Прооксиданты - легко окисляющиеся соединения, нейтрализующие свободные радикалы (нафтохиноны, витамины A и D, восстановители - НАДФH 2 , НАДH 2 , липоевая кислота, продукты метаболизма Пг и катехоламинов).

Антиоксиданты - вещества, ограничивающие или даже прекращающие свободнорадикальные и перекисные реакции (ретинол, каротиноиды, рибофлавин, токоферолы, маннитол, супероксиддисмутаза, каталаза).

Детергентные эффекты амфифилов. В результате активации липопероксидных реакций и гидролаз накапливаются гидроперекиси липидов, свободные жирные кислоты и фосфолипиды - амфифилы (вещества, способные фиксироваться как в гидрофобной, так и в гидрофильной зоне мембран). Это ведёт к формированию обширных амфифильных кластеров (простейшие трансмембранные каналы), микроразрывам и разрушению мембран.

Дисбаланс ионов и воды

Внутриклеточная жидкость содержит примерно 65% всей воды организма и характеризуется низкими концентрациями Na+ (10 ммоль/л), Cl - (5 ммоль/л), HCO 3 - (10 ммоль/л), но высокой концентрацией K+ (150 ммоль/л) и PO 4 3- (150 ммоль/л). Низкая концентрация Na+ и высокая концентрация K+ обусловлены работой Na+,K+-АТФазы, выкачивающей Na + из клеток в обмен на K + . Клеточный дисбаланс ионов и воды развивается вслед за расстройствами энергетического обеспечения и повреждением мембран.

К проявлениям ионного и водного дисбаланса относятся: ❖ изменение соотношения отдельных ионов в цитозоле; ❖ нарушение трансмембранного соотношения ионов; ❖ гипергидратация клеток; ❖ гипогидратация клеток; ❖ нарушения электрогенеза.

Изменения ионного состава обусловлены повреждениями мембранных АТФаз и дефектами мембран. Так, вследствие нарушения работы Na+,K+-АТФазы происходит накопление в цитозоле избытка Na+ и потеря клеткой K + .

Осмотическое набухание и осмотическое сморщивание клеток. Состояние клеток при изменении осмотичности рассмотрено на рис. 4-3.

Гипергидратация. Основная причина гипергидратации повреждён- ных клеток - повышение содержания Na + , а также органических веществ, что сопровождается увеличением в них осмотического давления и набуханием клеток. Это сочетается с растяжением и

Микроразрывами мембран. Такая картина наблюдается, например, при осмотическом гемолизе эритроцитов (рис. 4-3). Гипогидратация клеток наблюдается, например, при лихорадке, гипертермии, полиурии, инфекционных заболеваниях (холере, брюшном тифе, дизентерии). Эти состояния ведут к потере организмом воды, что сопровождается выходом из клеток жидкости, а также органических и неорганических водорастворимых соединений.

Рис. 4-3. Состояние взвешенных в растворе NaCl эритроцитов. По оси абсцисс: концентрация (С) NaCl (ммоль/л); по оси ординат: объём клеток (V). При концентрации NaCl 154 ммоль/л объём клеток такой же, как и в плазме крови (изотонический раствор NaCl), При увеличении концентрации NaCl (гипертонический раствор NaCl) вода выходит из эритроцитов, и они сморщиваются. При уменьшении концентрации NaCl (гипотонический раствор NaCl) вода входит в эритроциты, и они набухают. При гипотоничности раствора, примерно в 1,4 раза превышающей значение изотонического раствора, происходит разрушение мембраны. .

Нарушения электрогенеза (изменения характеристик мембранного потенциала - МП и потенциалов действия - ПД) имеют существенное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения ЭКГ при повреждении клеток миокарда, электроэнцефалограммы при патологии нейронов головного мозга, электромиограммы при изменениях в мышечных клетках.

Генетические нарушения

Изменения в геноме и экспрессии генов - существенный фактор повреждения клетки. К таким нарушениям относятся мутации, дерепрессии и репрессии генов, трансфекции, нарушения митоза.

Мутации (так, мутация гена инсулина приводит к развитию сахарного диабета).

Дерепрессия патогенного гена (дерепрессия онкогена сопровождается трансформацией нормальной клетки в опухолевую).

Репрессия жизненно важного гена (подавление экспрессии гена фенилаланин 4-монооксигеназы обусловливает гиперфенилаланинемию и развитие олигофрении).

Трансфекция (внедрение в геном чужеродной ДНК). Например, трансфекция ДНК вируса иммунодефицита приводит к возникновению СПИДа.

Нарушения митоза (так, деление ядер эритрокариоцитов без деления цитоплазмы наблюдается при мегалобластных анемиях) и мейоза (нарушение расхождения половых хромосом ведёт к формированию хромосомных болезней).

ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЙ КЛЕТОК

Любое повреждение клетки вызывает в ней разной степени выраженности специфические и неспецифические изменения. Специфические изменения развиваются при действии определённого патогенного фактора на различные клетки или в определённых видах клеток при действии разных повреждающих агентов.

Патогенные факторы, вызывающие специфические изменения в различных клетках: осмотическое давление, разобщители, гиперальдостеронемия и др.

Осмотическое давление. Повышение осмотического давления в клетке всегда сопровождается её гипергидратацией, растяжением мембран и нарушением их целостности (феномен «осмотическая деструкция клеток»).

Разобщители. Под влиянием разобщителей окисления и фосфорилирования (например, высших жирных кислот - ВЖК или Ca 2 +) снижается или блокируется сопряжение этих процессов и эффективность биологического окисления.

Гиперальдостеронемия. Повышенное содержание в крови и интерстиции альдостерона ведёт к накоплению в клетках Na+.

Группы клеток, реагирующие специфическими изменениями на действие различных повреждающих агентов:

Мышечные элементы на влияние разнообразных патогенных факторов значительной силы реагируют развитием их контрактуры.

Эритроциты при различных повреждениях подвергаются гемолизу с выходом Hb.

Неспецифические изменения (стереотипные, стандартные) развиваются при повреждении различных видов клеток и действии на них широкого спектра патогенных агентов. Примеры: ацидоз, чрезмерная активация свободнорадикальных и перекисных реакций, денатурация молекул белка, повышение проницаемости клеточных мембран, дисбаланс ионов и воды, снижение эффективности биологического окисления.

Типовые формы патологии

Основными типовыми формами патологии клеток являются их гипотрофия и атрофия, гипертрофия и дистрофии, дисплазии, метаплазия, а также некроз и апоптоз.

Гипотрофия и атрофия. Гипотрофия характеризуется уменьшением размеров и массы клетки, крайней степенью чего является атрофия. Гипотрофия и атрофия обычно сочетаются с уменьшением количества клеток - гипоплазией. Это приводит к уменьшению объёма органа, истончению кожи и слизистых оболочек. Пример: уменьшение массы и числа клеток в ишемизированной ткани или органе. Гипертрофия. Для гипертрофии характерно увеличение размеров и массы клетки. Нередко это сопровождается увеличением числа клеток (гиперплазией). Выделяют физиологическую и патологическую гипертрофию.

Физиологическая гипертрофия носит адаптивный характер (например, гипертрофия скелетных мышц у спортсменов).

Патологическая гипертрофия имеет (наряду с адаптивным) патологическое значение. Различают рабочую, викарную и нейрогуморальную патологическую гипертрофию, сочетающуюся с ремоделированием органа или ткани.

Рабочая гипертрофия развивается при постоянно повышенной нагрузке (например, патологическая гипертрофия миокарда при гипертонической болезни).

Викарная (заместительная) гипертрофия развивается в одном из парных органов при удалении второго.

Нейрогуморальная гипертрофия развивается при нарушении нейрогуморальной регуляции (например, акромегалия, гинекомастия).

Дистрофии

Клеточные дистрофии - нарушения обмена веществ, сопровождающиеся расстройством функций клеток.

Механизмы дистрофий разнообразны:

❖ синтез аномальных (в норме не встречающихся в клетке) веществ (например, белково-полисахаридного комплекса амилоида);

❖ избыточное превращение одних соединений в другие (например, углеводов в жиры при сахарном диабете);

❖ декомпозиция (фанероз): распад субклеточных структур и веществ (например, белково-липидных комплексов мембран при хронической гипоксии);

❖ инфильтрация клеток и межклеточного вещества органическими и неорганическими соединениями (например, липопротеинами низкой плотности - ЛПНП и Ca 2 + интимы артерий при атеросклерозе).

Классификация. Основным критерием классификации клеточных дистрофий является преимущественное нарушение метаболизма отдельных классов веществ. В связи с этим критерием различают диспротеинозы (белковые дистрофии), липидозы (жировые дистрофии), диспигментозы (пигментные дистрофии), углеводные и минеральные дистрофии. В отдельную группу выделяют тезаурисмозы (болезни накопления).

Диспротеинозы. Для белковых дистрофий характерно изменение физико-химических свойств клеточных белков. Выделяют зернистую, гиалиново-капельную и гидропическую дистрофии.

Липидозы. Для жировых дистрофий характерно увеличение содержания внутриклеточных липидов и их перераспределение в тканях и органах. Выделяют первичные и вторичные липидозы.

Первичные липидозы наблюдаются, как правило, при генетически обусловленных ферментопатиях (например, ганглиозидозы, цереброзидозы, сфинголипидозы).

Вторичные липидозы развиваются в результате воздействия различных патогенных факторов, таких как гипоксия, тяжёлые инфекции, системные заболевания, отравления (в том числе некоторыми ЛС - цитостатиками, антибиотиками, барбитуратами).

Углеводные дистрофии. Характеризуются нарушениями обмена полисахаридов (гликогена, мукополисахаридов) и гликопротеинов (муцина, мукоидов).

Полисахариды. При нарушениях метаболизма полисахаридов в клетках можно наблюдать уменьшение содержания углеводов (например, гликогена при СД), отсутствие углеводов (агликогенозы; например, при циррозе печени или хронических гепатитах) и накопление избытка углеводов (например, гликогеноз фон Гирке - нефромегалический синдром - гликогенная инфильтрация клеток почек).

Гликопротеины. Углеводные дистрофии, связанные с нарушением метаболизма гликопротеинов, характеризуются, как правило, накоплением муцинов и мукоидов, имеющих слизистую консистенцию (в связи с этим их называют также слизистыми дистрофиями).

Диспигментозы. Пигментные дистрофии классифицируют в зависимости от их происхождения (первичные и вторичные), механизма развития, структуры пигмента, проявлений и распро- странённости (местные и системные). Примеры:

Частицы сажи, угля и т.п. накапливаются в макрофагах лёгких в результате пребывания в загрязнённой атмосфере. В связи с этим ткань лёгких приобретает тёмно-серый цвет.

Гемосидерин. При гемолизе эритроцитов происходят освобождение Hb, его захват макрофагами печени, селезёнки, красного костного мозга и превращение в пигмент бурого цвета - гемосидерин.

Минеральные дистрофии. Из минеральных дистрофий наибольшее клиническое значение имеют нарушения обмена кальция, калия, железа, цинка, меди в виде отложения солей этих химических элементов (например, кальцинозы, сидерозы, отложение меди при гепатоцеребральной дистрофии).

Тезаурисмозы (от греч. thesauros - сокровищница) - болезни накопления промежуточных продуктов обмена углеводов, гликозаминогликанов, липидов и белков. Большинство тезаурисмозов - результат наследственных ферментопатий. В зависимости от типа накапливающихся веществ тезаурисмозы подразделяют на липидные (липидозы), гликогеновые (гликогенозы), аминокислотные, нуклеопротеиновые, мукополисахаридные (мукополисахаридозы), муколипидные (муколипидозы). В отдельные группы выделяют болезни накопления лизосомные и пероксисомные. Примеры:

Тэя-Сакса болезнь - врождённая недостаточность лизосомальной гексозаминидазы А нейронов - характеризуется накоплением ганглиозидов в цитоплазме нервных клеток.

Цереброгепаторенальный синдром (синдром Целлвегера) - типичная лизосомная болезнь накопления, развивающаяся вследствие дефектов генов, кодирующих белки пероксисом (в плазме крови и тканях увеличено содержание длинноцепочечных жирных кислот).

Болезнь Гоше - накопление в фагоцитирующих клетках селезён- ки и красного костного мозга избытка глюкоцереброзидов.

Гликогенозы - накопление в цитоплазме клеток внутренних органов разных форм аномального гликогена.

Метаплазия

Метаплазия - замещение клеток, свойственных данному органу, нормальными клетками другого типа. Примеры:

♦ Хронические воспалительные заболевания лёгких, дефицит витамина А, курение приводят к появлению среди клеток мерцательного эпителия бронхов островков многослойного плоского эпителия.

♦ При хроническом цервиците возможно замещение однослойного цилиндрического эпителия многослойным плоским.

♦ В результате забрасывания (рефлюкса) кислого содержимого желудка многослойный плоский эпителий слизистой оболочки пищевода замещается однослойным эпителием, характерным для тонкой кишки (пищевод Баррета).

Метаплазию рассматривают как пограничное состояние (на грани нормального). В ряде случаев участки метаплазии становятся диспластическими, что чревато их опухолевой трансформацией. Дисплазии - нарушения дифференцировки клеток, сопровождающиеся стойкими изменениями их структуры, метаболизма и функции (клеточный атипизм). В отличие от метаплазий, для дисплазий характерно появление признаков клеточного атипизма при сохранной структуре и архитектуре ткани. Дисплазии предшествуют опухолевому росту (предопухолевые состояния).

ГИБЕЛЬ КЛЕТКИ

Клетки погибают как в норме, так и в условиях патологии. Различают два принципиально разных варианта смерти клеток - некроз (гибель клетки вследствие её значительного - летального - повреждения) и апоптоз (гибель клетки в результате включения специальной программы смерти).

Некроз

Некроз (от греч. necros - мёртвый) - патологическая гибель клеток в результате действия на них повреждающих факторов.

Некроз является завершающим этапом клеточных дистрофий или следствием прямого действия на клетку повреждающих факторов значительной (разрушающей) силы. Основные звенья патогенеза некроза те же, что и повреждения клеток, но при развитии некроза они максимально интенсифицированы и развиваются на фоне недостаточности адаптивных механизмов (защиты и регенерации повреждённых структур, компенсации нарушенных процессов). О необратимости повреждения клетки свидетельствуют, как правило, разрывы плазмолеммы и выраженные изменения структуры ядра (кариорексис - разрывы

ядерной мембраны, фрагментация ядра; кариолизис - распыление хроматина; кариопикноз - сморщивание содержимого ядра).

Паранекроз и некробиоз. Некрозу предшествуют паранекроз (сходные с некротическими, но ещё обратимые изменения метаболизма и структуры клеток) и некробиоз (совокупность необратимых дистрофических изменений, ведущих к некрозу).

Лизис и аутолиз. Некротизированные клетки подвергаются деструкции (лизису). Если разложение осуществляется при помощи лизосомных ферментов и свободных радикалов погибших клеток, процесс называется аутолизом.

Гетеролизис. Разрушение повреждённых и погибших клеток при участии других (неповреждённых) клеток (мигрирующих в зону альтерации фагоцитов, а также попавших в неё микробов) обозначают как гетеролизис.

Этиология и патогенез некроза. Выделяют несколько основных этиологических факторов некроза - травматические, токсические, трофоневротические, циркуляторные и иммуногенные. Развивающиеся в связи с действием этих факторов ишемия, венозная гиперемия и лимфостаз сопровождаются гипоксией и активацией механизмов повреждения клеток, что приводит, в конце концов, к некрозу.

Травматический некроз. Является результатом прямого действия на ткань физических (механических, температурных, вибрационных, радиационных) и др. факторов.

Токсический некроз. Развивается при действии на ткани токсинов, чаще микробных.

Трофоневротический некроз развивается при нарушении кровоснабжения или иннервации тканей при поражении периферической нервной системы. Примером трофоневротического некроза могут служить пролежни.

Иммуногенный некроз - результат цитолиза в ходе аутоагрессивных иммунных и аллергических реакций. Примером может служить фибриноидный некроз при феномене Артюса. Цитолиз с участием T-лимфоцитов-киллеров, NK-клеток и фагоцитов приводит к некрозу участков печени при хроническом гепатите.

Циркуляторный некроз. Вызван недостаточностью циркуляции крови в кровеносных и лимфатических сосудах в результате их тромбоза, эмболии, длительного спазма, сдавления извне. Недостаточная циркуляция в ткани вызывает её ишемию, гипоксию и некроз.

Апоптоз

Апоптоз (от греч. apoptosis - опадание листьев) - программируемая гибель клетки.

В этом принципиальное отличие апоптоза от некроза. Апоптоз является компонентом многих физиологических процессов, а также наблюдается при адаптации клетки к факторам среды. Биологическая роль апоптоза заключается в поддержании равновесия между процессами пролиферации и гибели клеток. Апоптоз - энергозависимый процесс. Нарушения или блокада апоптоза может стать причиной патологии (роста опухолей, реакций иммунной аутоагрессии, иммунодефицитов и др.).

Примеры апоптоза

Запрограммированная гибель клеток в ходе эмбрионального развития, гистогенеза и морфогенеза органов. Пример: гибель нейробластов (от 25 до 75%) на определённых этапах развития мозга.

Смерть клеток, выполнивших свою функцию (например, иммунокомпетентных клеток по завершении иммунного ответа или эозинофилов после дегрануляции).

Ликвидация аутоагрессивных T-лимфоцитов на определённых этапах развития тимуса или после завершения иммунного ответа.

Старение сопровождается гормонозависимой инволюцией и апоптозом клеток эндометрия, атрезией фолликулов яичников у женщин в менопаузе, а также - ткани простаты и яичек у пожилых мужчин.

Трансфекция - внедрение в клетку фрагмента нуклеиновой кислоты вируса (например, при вирусном гепатите, миокардите, энцефалите, СПИДе) нередко вызывает её апоптоз.

Опухолевый рост закономерно сопровождается апоптозом большого числа трансформированных клеток.

Механизм апоптоза

В ходе апоптоза выделяют четыре стадии - инициация, программирование, реализации программы, удаление погибшей клетки. Стадия инициации. На этой стадии информационные сигналы воспринимаются клеточными рецепторами и передаются сигналы внутрь клетки.

Трансмембранные сигналы подразделяют на «отрицательные», «положительные» и смешанные. ❖ «Отрицательный» сигнал означает прекращение действия на клетку либо отсутствие в ткани факторов роста или цитокинов, регулирующих деление и созревание клетки, а также гормонов, контролирующих развитие клеток. ❖ «Положительный» сигнал подразумевает воздействие на клетку агента, запускающего программу апоптоза. Например, связывание ФНО с его мембранным рецептором CD95 активирует программу смерти клетки. ❖ Смешанный сигнал - комбинация сигналов первой и второй групп. Так, апоптозу подвергаются лимфоциты, стимулированные митогеном, но не контактировавшие с чужеродным Аг; погибают и лимфоциты, на которые воз-

действовал Аг, но они не получили других сигналов (например, митогенного).

♦ Среди внутриклеточных стимулов апоптоза наибольшее значение имеют: ❖ избыток H + и свободных радикалов; ❖ повышенная температура; ❖ внутриклеточные вирусы и ❖ гормоны, обеспечивающие свой эффект через ядерные рецепторы (например, глюкокортикоиды).

Стадия программирования (контроля и интеграции процессов апоптоза). Выделяют два варианта реализации стадии программирования: прямая активация эффекторных каспаз и эндонуклеаз (минуя геном клетки) и опосредованная их активация через экспрессию определённых генов.

Прямая передача сигнала. Осуществляется через адапторные белки, гранзимы и цитохром С. Прямая передача сигнала наблюдается в безъядерных клетках (например, эритроцитах).

Опосредованная через геном передача сигнала. На этой стадии специализированные белки либо блокируют потенциально летальный сигнал, либо реализуют сигнал к апоптозу путём активации исполнительной программы.

Белки-ингибиторы апоптоза (продукты экспрессии антиапоптозных генов Bcl-2, Bcl-XL) блокируют апоптоз (например, путём уменьшения проницаемости мембран митохондрий, в связи с чем уменьшается вероятность выхода в цитозоль одного из пусковых факторов апоптоза - цитохрома C).

Белки-промоторы апоптоза (например, белки, синтез которых контролируется генами Bad, Bax, антионкогенами Rb или p 53) активируют эффекторные цистеиновые протеазы (каспазы и эндонуклеазы).

Стадия реализации программы (исполнительная, эффекторная) заключается в гибели клетки, осуществляемой посредством активации протеаз и эндонуклеаз. Непосредственными исполнителями «умертвления» клетки являются Ca 2 +,Mg 2 +-зависимые эндонуклеазы (катализируют распад нуклеиновых кислот) и эффекторные каспазы (расщепляют белки). При этом в клетке формируются и от неё отпочковываются фрагменты, содержащие остатки органелл, цитоплазмы, хроматина и цитолеммы - апоптозные тельца.

Стадия удаления фрагментов погибших клеток. На поверхности апоптозных телец имеются лиганды, с которыми взаимодействуют рецепторы фагоцитирующих клеток. Фагоциты обнаруживают, поглощают и разрушают апоптозные тельца (гетеролизис). В результате содержимое разрушенной клетки не попадает в межклеточное пространство и при апоптозе отсутствует воспалительная реакция.

НЕКРОПТОЗ

В последние годы описан еще один вариант смерти клеток, отличающийся как от апоптоза, так и от некроза. Он обозначен как некроптоз. Программа некроптоза может быть стимулирована, подобно апоптозу, лигандами клеточных рецепторов из семейства фактора некроза опухолей (ФНОα). Однако гибель клетки происходит без активации протеаз, относящихся к каспазам (некроптоз развивается при полном подавлении активности каспаз).

Механизм разрушения клетки при некроптозе в большей мере подобен аутолизу. Считают, что некроптоз является одним из своеобразных механизмов гибели нервных клеток при инсультах.

Адаптация клеток

МЕХАНИЗМЫ АДАПТАЦИИ КЛЕТОК К ПОВРЕЖДЕНИЮ

Комплекс адаптивных реакций клеток подразделяют на внутриклеточные и межклеточные.

Внутриклеточные адаптивные механизмы

Внутриклеточные механизмы адаптации реализуются в самих повреж- дённых клетках. К этим механизмам относят: ❖ компенсацию нарушений энергетического обеспечения клетки; ❖ защиту мембран и ферментов клетки; ❖ уменьшение или устранение дисбаланса ионов и воды в клетке; ❖ устранение дефектов реализации генетической программы клетки;

Компенсацию расстройств регуляции внутриклеточных процессов;

Снижение функциональной активности клеток; ❖ действие белков теплового шока; ❖ регенерацию; ❖ гипертрофию; ❖ гиперплазию.

Компенсация энергетических нарушений обеспечивается активацией процессов ресинтеза и транспорта АТФ, снижением интенсивности функционирования клеток и пластических процессов в них.

Устранение дисбаланса ионов и воды в клетке осуществляется путём активации буферных и транспортных клеточных систем.

Ликвидация генетических дефектов достигается путём репарации ДНК, устранения изменённых фрагментов ДНК, нормализации транскрипции и трансляции.

Компенсация расстройств регуляции внутриклеточных процессов заключается в изменении числа рецепторов, их чувствительности к лигандам, нормализации систем посредников.

Снижение функциональной активности клеток позволяет сэкономить и перераспределить ресурсы и, тем самым, увеличить возможности компенсации изменений, вызванных повреждающим фактором. В результате степень и масштаб повреждения клеток при действии

патогенного фактора снижаются, а после прекращения его действия отмечается более интенсивное и полное восстановление клеточных структур и их функций.

Белки теплового шока (HSP, от Heat Shock Proteins; белки стресса) интенсивно синтезируются при воздействии на клетки повреждающих факторов. Эти белки способны защитить клетку от повреждений и предотвратить её гибель. Наиболее распространены HSP с молекулярной массой 70 000 (hsp70) и 90 000 (hsp90). Механизм действия этих белков многообразен и заключается в регуляции процессов сборки и конформации других белков.

Межклеточные адаптивные механизмы

Межклеточные (системные) механизмы адаптации реализуются непов- реждёнными клетками в процессе их взаимодействия с повреждёнными.

Механизмы взаимодействия клеток:

♦ обмен метаболитами, местными цитокинами и ионами; ❖ реализация реакций системы ИБН;

♦ изменения лимфо- и кровообращения;

♦ эндокринные влияния;

♦ нервные воздействия.

Примеры

Гипоксия. Уменьшение содержания кислорода в крови и клетках стимулирует активность нейронов дыхательного центра, деятельность сердечно-сосудистой системы, выброс эритроцитов из костного мозга. В результате увеличивается объём альвеолярной вентиляции, перфузия тканей кровью, число эритроцитов в периферической крови, что уменьшает или ликвидирует недостаток кислорода и активирует обмен веществ в клетках.

Гипогликемия. Повреждение клеток в условиях гипогликемии может быть уменьшено в результате инкреции глюкагона, адреналина, глюкокортикоидов, соматотропного гормона (СТГ), способствующих повышению уровня глюкозы в плазме крови и транспорта глюкозы в клетки.

Ишемия. Снижение кровоснабжения артериальной кровью какого-либо участка ткани, как правило, сопровождается увеличением притока крови по коллатеральным (обходным) сосудам, что восстанавливает доставку к клеткам кислорода и субстратов метаболизма.

Повышение устойчивости клеток к повреждению

Мероприятия и средства, повышающие устойчивость интактных клеток к действию патогенных факторов и стимулирующие адаптивные механизмы при повреждении клеток, подразделяют:

♦ по целевому назначению на лечебные и профилактические;

♦ по природе на медикаментозные, немедикаментозные и комбинированные;

♦ по направленности на этиотропные, патогенетические и саногенетические.

Профилактические и лечебные мероприятия

Немедикаментозные агенты. Немедикаментозные средства применяют с целью профилактики повреждения клетки. Эти средства повышают устойчивость клеток к ряду патогенных агентов.

Пример. Тренировка организма (по определённой схеме) умеренной гипоксией, стрессорными факторами, физическими нагрузками и охлаждением увеличивает резистентность к значительной гипоксии, ишемии, холоду, инфекционным и другим агентам. В основе увеличения резистентности клеток при тренировке лежит повышение надёжности и мощности регулирующих систем, механизмов энергетического и пластического обеспечения клеток, их компенсаторных, восстановительных и защитных реакций, механизмов синтеза белков и репарации ДНК, процессов формирования субклеточных структур и других изменений.

Медикаментозные средства. Лекарственные средства (ЛС) применяют, в основном, для активации адаптивных механизмов уже после воздействия патогенного агента. Большинство ЛС применяют с целью этиотропной или патогенетической терапии.

К основным воздействиям, имеющим целью уменьшить силу патогенного действия на клетки или блокировать механизм развития патологического процесса, относят: снижение степени или устранение нарушений энергетического обеспечения клеток; коррекцию и защиту механизмов трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращение повреждения генетического аппарата клетки; ? коррекцию механизмов регуляции и интеграции внутриклеточных процессов.

Комбинированные воздействия дают наибольший эффект (как лечебный, так и профилактический).

Общие принципы терапии и профилактики

К общим принципам терапии и профилактики относят этиотропный, патогенетический и саногенетический принципы.

Этиотропные воздействия направлены на предотвращение действия (профилактика) или на устранение, прекращение, уменьшение силы или длительности влияния патогенных факторов на клетки, а также устранение условий, способствующих реализации этого действия (лечение).

Саногенетические мероприятия имеют целью активацию адаптивных механизмов (компенсации, защиты, восстановления и приспособления клеток) к изменившимся условиям, что предотвращает развитие заболевания (профилактика) или ускоряет выздоровление организма (лечение).

Патогенетические воздействия направлены на разрыв звеньев патогенеза путём защиты механизмов энергоснабжения клеток, коррекции трансмембранного переноса, внутриклеточного распределения ионов и контроля объёма клеток; предотвращения действия факторов, вызывающих изменения в генетическом аппарате клеток.

Железодефицитная анемия;

2. В12-дефицитная анемия;

3. Фолиеводефицитная анемия;

4. Анемия вследствие недостаточности белков;

5. Анемия вследствие цинги;

6. Неуточненная анемия, обусловленная неправильным питанием;

7. Анемия вследствие недостаточности ферментов;

8. Талассемия (альфа-талассемия, бета-талассемия, дельта-бета-талассемия);

9. Наследственное персистирование фетального гемоглобина;

11. Наследственный сфероцитоз (анемия Минковского-Шоффара);

14. Медикаментозная неаутоиммунная гемолитическая анемия;

15. Гемолитико-уремический синдром;

16. Пароксизмальная ночная гемоглобинурия (болезнь Маркиафавы-Микели);

17. Приобретенная чистая красноклеточная аплазия (эритробластопения);

18. Конституциональная или медикаментозная апластическая анемия;

19. Идиопатическая апластическая анемия;

20. Острая постгеморрагическая анемия (после острой кровопотери);

21. Анемия при новообразованиях;

22. Анемия при хронических соматических заболеваниях;

23. Сидеробластная анемия (наследственная или вторичная);

24. Врожденная дизэритропоэтическая анемия;

25. Острый миелобластный недифференцированный лейкоз;

26. Острый миелобластный лейкоз без созревания;

27. Острый миелобластный лейкоз с созреванием;

28. Острый промиелоцитарный лейкоз;

29. Острый миеломонобластный лейкоз;

30. Острый монобластный лейкоз;

31. Острый эритробластный лейкоз;

32. Острый мегакариобластный лейкоз;

33. Острый лимфобластный Т-клеточный лейкоз;

34. Острый лимфобластный В-клеточный лейкоз;

35. Острый панмиелолейкоз;

36. Болезнь Леттерера-Сиве;

37. Миелодиспластический синдром;

38. Хронический миелолейкоз;

39. Хронический эритромиелоз;

40. Хронический моноцитарный лейкоз;

41. Хронический мегакариоцитарный лейкоз;

43. Тучноклеточный лейкоз;

44. Макрофагальный лейкоз;

45. Хронический лимфолейкоз;

46. Волосатоклеточный лейкоз;

48. Болезнь Сезари (лимфоцитома кожи);

49. Грибовидный микоз;

50. Лимфосаркома Беркитта;

51. Лимфома Леннерта;

52. Гистиоцитоз злокачественный;

53. Злокачественная тучноклеточная опухоль;

54. Истинная гистиоцитарная лимфома;

56. Болезнь Ходжкина (лимфогранулематоз);

57. Неходжкинские лимфомы;

58. Миеломная болезнь (генерализованная плазмоцитома);

59. Макроглобулинемия Вальденстрема;

60. Болезнь тяжёлых альфа-цепей;

61. Болезнь гамма-тяжелых цепей;

62. Диссеминированное внутрисосудистое свертывание (ДВС-синдром);

63. Геморрагическая болезнь новорожденных;

64. Дефицит К-витаминзависимых факторов свертываемости крови;

65. Дефицит I фактора свертываемости и дисфибриногенемия;

66. Дефицит II фактора свертываемости;

67. Дефицит V фактора свертываемости;

68. Дефицит VII фактора свертывания крови (наследственная гипопроконвертинемия);

69. Наследственный дефицит VIII фактора свертываемости крови (болезнь Виллебранда);

70. Наследственный дефицит IX фактора свертываемости крови (болезнь Кристамаса, гемофилия В);

71. Наследственный дефицит X фактора свертываемости крови (болезнь Стюарта-Прауэра);

72. Наследственный дефицит XI фактора свертываемости крови (гемофилия С);

73. Дефицит XII фактора свертывания крови (дефект Хагемана);

74. Дефицит XIII фактора свертываемости;

75. Дефицит плазменных компонентов калликреин-кининовой системы;

76. Дефицит антитромбина III;

77. Наследственная геморрагическая телеангиэктазия (болезнь Рандю-Ослера);

78. Тромбастения Гланцманна;

79. Синдром Бернара-Сулье;

80. Синдром Вискотта-Олдрича;

81. Синдром Чедиака-Хигаси;

83. Синдром Хегглина;

84. Синдром Казабаха – Меррита;

85. Геморрагический васкулит (болезнь Шейнлейна-Геноха);

86. Синдром Элерса-Данло;

87. Синдром Гассера;

88. Аллергическая пурпура;

89. Идиопатическая тромбоцитопеническая пурпура (болезнь Верльгофа);

90. Имитационная кровоточивость (синдром Мюнхгаузена);

92. Функциональные нарушения полиморфно-ядерных нейтрофилов;

95. Семейный эритроцитоз;

96. Эссенциальный тромбоцитоз;

97. Гемофагоцитарный лимфогистиоцитоз;

98. Гемофагоцитарный синдром, обусловленный инфекцией;

99. Цитостатическая болезнь.

Заболевание крови – виды

1. Анемия (состояния, при которых уровень гемоглобина ниже нормы);

2. Геморрагические диатезы или патология системы гемостаза (нарушения свертываемости крови);

3. Гемобластозы (различные опухолевые заболевания их клеток крови, костного мозга или лимфатических узлов);

4. Другие заболевания крови (болезни, которые не относятся ни к геморрагическим диатезам, ни к анемиям, ни к гемобластозам).

Анемии

1. Анемии вследствие нарушения синтеза гемоглобина или эритроцитов;

2. Гемолитические анемии, связанные с усиленным распадом гемоглобина или эритроцитов;

3. Геморрагические анемии, связанные с кровопотерей.

Анемии вследствие кровопотери подразделяются на два вида:

  • Острая постгеморрагическая анемия – возникает после быстрой одномоментной потери более 400 мл крови;
  • Хроническая постгеморрагическая анемия – возникает в результате длительной, постоянной кровопотери из-за небольшого, но постоянного кровотечения (например, при обильных менструациях, при кровотечении из язвы желудка и т.д.).

Анемии, обусловленные нарушением синтеза гемоглобина или образования эритроцитов, подразделяются на следующие виды:

1. Апластические анемии:

  • Красноклеточные аплазии (конституциональная, медикаментозная и др.);
  • Парциальная красноклеточная аплазия;
  • Анемия Блекфана-Даймонда;
  • Анемия Фанкони.

2. Врожденная дизэритропоэтическая анемия.

3. Миелодиспластический синдром.

4. Дефицитарные анемии:

  • Железодефицитная анемия;
  • Фолиеводефицитная анемия;
  • В12-дефицитная анемия;
  • Анемия на фоне цинги;
  • Анемия при недостаточности белков в рационе питания (квашиоркор);
  • Анемия при недостатке аминокислот (оротацидурическая анемия);
  • Анемия при недостатке меди, цинка и молибдена.

5. Анемии при нарушении синтеза гемоглобина:

  • Порфирии – сидероахристические анемии (синдром Келли-Патерсона, синдром Пламмера-Винсона).

6. Анемии хронических заболеваний (при почечной недостаточности, раковых опухолях и др.).

7. Анемии при повышенном расходовании гемоглобина и других веществ:

Как видно, спектр анемий, обусловленных нарушением синтеза гемоглобина и образованием эритроцитов, весьма широк. Однако на практике большая часть данных анемий встречается редко или очень редко. А в повседневной жизни люди чаще всего сталкиваются с различными вариантами дефицитарных анемий, таких, как железодефицитная, В12-дефицитная, фолиеводефицитная и т.д. Данные анемии, как понятно из названия, формируются из-за недостаточного количества веществ, необходимых для образования гемоглобина и эритроцитов. Второй по частоте встречаемости анемией, связанной с нарушением синтеза гемоглобина и эритроцитов, является форма, развивающаяся при тяжелых хронических заболеваниях.

1. Анемии, обусловленные дефектом формы эритроцитов:

  • Наследственный сфероцитоз (болезнь Минковского-Шаффара);
  • Наследственный элиптоцитоз;
  • Наследственный стоматоцитоз;
  • Наследственный акантоцитоз.

2. Анемии, обусловленные недостаточностью ферментов эритроцитов:

  • Анемия вследствие недостаточности глюкозо-6-фосфатдегидрогеназы;
  • Анемия вследствие нарушений обмена глутатиона;
  • Анемия вследствие нарушений метаболизма нуклеотидов;
  • Анемия вследствие недостаточности гексокиназы;
  • Анемия вследствие недостаточности пируваткиназы;
  • Анемия вследствие недостаточности триозофосфатизомеразы.

3. Анемии, обусловленные дефектной структурой гемоглобина:

  • Серповидно-клеточная анемия.

4. Анемии, обусловленные дефектными альфа- и бета- цепями белка глобина, входящего в состав гемоглобина:

  • Талассемия (альфа-, бета-, дельта-талассемия);
  • Дельта-бета-талассемия;
  • Наследственное персистирование фетального гемоглобина.

Приобретенные гемолитические анемии подразделяют на следующие виды:

1. Гемолитические анемии, обусловленные разрушением эритроцитов антителами:

  • Анемия после переливания крови или ее заменителей;
  • Аутоиммунные гемолитические анемии (АИГА).

2. Гемолитические анемии, обусловленные механическим разрушением эритроцитов:

  • Маршевая гемоглобинурия (возникает после долгой маршевой ходьбы);
  • Анемия на фоне патологии мелких и средних сосудов;
  • Тромботическая тромбоцитопеническая пурпура;
  • Гемолитико-уремический синдром;
  • Пароксизмальная ночная гемоглобинурия (болезнь Маркиафавы-Микели).
  • Анемия при малярии;
  • Анемия при отравлении свинцом и т.д.

4. Анемии, обусловленные отравлением гемолитическими ядами.

5. Анемии, обусловленные большим количеством или усиленной активностью клеток из группы мононуклеарных фагоцитов:

  • Анемия при остром инфекционном заболевании;
  • Анемия при увеличенной селезенке.

Как видно, гемолитические анемии в повседневной жизни встречаются еще реже, чем связанные с нарушением синтеза гемоглобина или эритроцитов. Однако же данные виды анемий имеют более злокачественное течение, и зачастую хуже поддаются терапии.

Гемобластозы (онкологические заболевания крови, рак крови)

  • Лимфобластный Т- или В-клеточный;
  • Миелобластный;
  • Монобластный;
  • Миеломонобластный;
  • Промиелоцитарный;
  • Эритромиелобластный;
  • Мегакариобластный;
  • Плазмобластный;
  • Макрофагальный;
  • Недифференцированный;
  • Панмиелолейкоз;
  • Острый миелофиброз.

Хронический лейкоз подразделяется на следующие виды:

1. Лимфопролиферативные хронические лейкозы:

  • Лимфолейкоз;
  • Волосатоклеточный лейкоз;
  • Т-клеточный лейкоз;
  • Болезнь Сезари;
  • Болезнь Леттерера-Сиве;
  • Парапротеинемии (миеломная болезнь, макроглобулинемия Вальденстрема, болезнь легких и тяжелых цепей).

2. Миелопролиферативные лейкозы:

  • Миелоцитарный лейкоз;
  • Нейтрофильный лейкоз;
  • Базофильный лейкоз;
  • Эозинофильный лейкоз;
  • Эритремия;
  • Мегакариоцитарный;
  • Тучноклеточный;
  • Сублейкемический миелоз;
  • Миелосклероз;
  • Эссенциальная тромбоцитемия.

3. Моноцитопролиферативные лейкозы:

  • Моноцитарный лейкоз;
  • Миеломоноцитарный лейкоз;
  • Гистиоцитоз Х.

4. Другие хронические лейкозы:

  • Злокачественная тучноклеточная опухоль;
  • Истинная гистиоцитарная лимфома;
  • Злокачественный гистиоцитоз.

Все разновидности острого и хронического лейкозов развиваются из клеток, имеющихся в костном мозгу и находящихся на разных стадиях созревания. Острые лейкозы обладают большей степенью злокачественности по сравнению с хроническими, а потому хуже поддаются лечению и имеют более негативный прогноз по жизни и по здоровью.

1. Фолликулярная лимфома:

  • Смешанная крупноклеточная и мелкоклеточная с расщепленными ядрами;
  • Крупноклеточная.

2. Диффузная лимфома:

  • Мелкоклеточная;
  • Мелкоклеточная с расщепленными ядрами;
  • Смешанная мелкоклеточная и крупноклеточная;
  • Ретикулосаркома;
  • Иммунобластная;
  • Лимфобластная;
  • Опухоль Беркитта.

3. Периферические и кожные Т-клеточные лимфомы:

  • Болезнь Сезари;
  • Грибовидный микоз;
  • Лимфома Леннерта;
  • Периферическая Т-клеточная лимфома.

4. Другие лимфомы:

Геморрагические диатезы (заболевания свертываемости крови)

1. Синдром диссеминированного внутрисосудистого свертывания (ДВС-синдром).

2. Тромбоцитопении (количество тромбоцитов в крови ниже нормы):

  • Идиопатическая тромбоцитопеническая пурпура (болезнь Верльгофа);
  • Аллоиммунная пурпура новорожденных;
  • Трансиммунная пурпура новорожденных;
  • Гетероиммунные тромбоцитопении;
  • Аллергический васкулит;
  • Синдром Эванса;
  • Сосудистая псевдогемофилия.

3. Тромбоцитопатии (тромбоциты имеют дефектную структуру и неполноценную функциональную активность):

  • Болезнь Херманского-Пудлака;
  • Синдром TAR;
  • Синдром Мая-Хегглина;
  • Болезнь Вискотта-Олдрича;
  • Тромбастения Гланцманна;
  • Синдром Бернара-Сулье;
  • Синдром Чедиака-Хигаси;
  • Болезнь Виллебранда.

4. Нарушения свертываемости крови на фоне патологии сосудов и недостаточности коагуляционного звена процесса свертывания:

  • Болезнь Рандю-Ослера-Вебера;
  • Синдром Луи-Бар (атаксия-телеангиэктазия);
  • Гемангиомы;
  • Синдром Казабаха-Мерритта;
  • Синдром Элерса-Данло;
  • Синдром Гассера;
  • Геморрагический васкулит (болезнь Шейнлейна-Геноха);
  • Тромботическая тромбоцитопеническая пурпура.

5. Нарушения свертываемости крови, обусловленные нарушениями кинин-калликреиновой системы:

  • Дефект Флетчера;
  • Дефект Вильямса;
  • Дефект Фитцжеральда;
  • Дефект Фложак.

6. Приобретенные коагулопатии (патология свертываемости крови на фоне нарушений коагуляционного звена свертывания):

  • Афибриногенемия;
  • Коагулопатия потребления;
  • Фибринолитическая кровоточивость;
  • Фибринолитическая пурпура;
  • Молиниеносная пурпура;
  • Геморрагическая болезнь новорожденных;
  • Дефицит К-витаминзависимых факторов;
  • Нарушение свертываемости после приема антикоагулянтов и фибринолитиков.

7. Наследственные коагулопатии (нарушения свертываемости крови, обусловленные дефицитом факторов свертывания):

  • Дефицит фибриногена;
  • Дефицит II фактора свертываемости (протромбина);
  • Дефицит V фактора свертываемости (лабильного);
  • Дефицит VII фактора свертываемости;
  • Дефицит VIII фактора свертываемости (гемофилия А);
  • Дефицит IX фактора свертываемости (болезнь Кристмаса, гемофилия В);
  • Дефицит X фактора свертываемости (Стюарта-Прауэра);
  • Дефицит XI фактора (гемофилия С);
  • Дефицит XII фактора свертываемости (болезнь Хагемана);
  • Дефицит XIII фактора свертываемости (фибринстабилизирующего);
  • Дефицит предшественника тромбопластина;
  • Дефицит АС-глобулина;
  • Дефицит проакцелерина;
  • Сосудистая гемофилия;
  • Дисфибриногенемия (врожденная);
  • Гипопроконвертинемия;
  • Болезнь Оврена;
  • Повышение содержания антитромбина;
  • Повышенное содержание анти-VIIIa, анти-IXa, анти-Xa, анти-XIa (антифакторы свертываемости).

Другие болезни крови

1. Агранулоцитоз (отсутствие нейтрофилов, базофилов и эозинофилов в крови);

2. Функциональные нарушения активности палочкоядерных нейтрофилов;

3. Эозинофилия (увеличение количества эозинофилов в крови);

5. Семейный эритроцитоз (увеличение количества эритроцитов крови);

6. Эссенциальный тромбоцитоз (увеличение количества тромбоцитов крови);

7. Вторичная полицитемия (увеличение количества всех клеток крови);

8. Лейкопения (сниженное количество лейкоцитов в крови);

9. Цитостатическая болезнь (заболевание, связанное в приемом цитостатических препаратов).

Заболевания крови – симптомы

  • Слабость;
  • Утомляемость;
  • Головокружение;
  • Одышка;
  • Сердцебиение;
  • Снижение аппетита;
  • Повышенная температура тела, которая держится практически постоянно;
  • Частые и длительно текущие инфекционно-воспалительные процессы;
  • Зуд кожи;
  • Извращение вкуса и обоняния (человеку начинают нравиться специфические запахи и вкусы);
  • Боли в костях (при лейкозах);
  • Кровоточивость по типу петехий, кровоподтеков и т.д.;
  • Постоянные кровотечения из слизистых оболочек носа, рта и органов желудочно-кишечного тракта;
  • Боли в левом или правом подреберье;
  • Низкая работоспособность.

Данный список симптомов заболеваний крови является весьма кратким, однако он позволяет сориентироваться относительно наиболее типичных клинических проявлений патологии системы крови. Если у человека появились какие-либо вышеперечисленные симптомы, то следует обратиться к врачу для детального обследования.

Синдромы заболеваний крови

  • Анемический синдром;
  • Геморрагический синдром;
  • Язвенно-некротический синдром;
  • Интоксикационный синдром;
  • Оссалгический синдром;
  • Синдром белковой патологии;
  • Сидеропенический синдром;
  • Плеторический синдром;
  • Желтушный синдром;
  • Синдром лимфаденопатии;
  • Синдром гепато-спленомегалии;
  • Синдром кровопотери;
  • Лихорадочный синдром;
  • Гематологический синдром;
  • Костномозговой синдром;
  • Синдром энтеропатии;
  • Синдром артропатии.

Перечисленные синдромы развиваются на фоне различных заболеваний крови, причем некоторые из них характерны только для узкого спектра патологий со сходным механизмом развития, а другие, напротив, встречаются практически при любой болезни крови.

Анемический синдром

  • Бледность кожного покрова и слизистых оболочек;
  • Сухая и шелушащаяся или влажная кожа;
  • Сухие, ломкие волосы и ногти;
  • Кровотечения из слизистых оболочек – десен, желудка, кишечника и др.;
  • Головокружение;
  • Шаткая походка;
  • Потемнение в глазах;
  • Шум в ушах;
  • Усталость;
  • Сонливость;
  • Одышка при ходьбе;
  • Сердцебиение.

При тяжелом течении анемии у человека могут появиться пастозность ног, извращение вкуса (нравятся несъедобные вещи, например, мел), жжение в языке или его ярко-малиновая окраска, а также поперхивание при проглатывании кусочков пищи.

Геморрагический синдром

  • Кровоточивость десен и длительное кровотечение при удалении зуба и травмировании слизистой полости рта;
  • Ощущение дискомфорта в области желудка;
  • Черный стул;
  • Эритроциты или кровь в моче;
  • Маточные кровотечения;
  • Кровотечения из проколов от инъекций;
  • Синяки и точечные кровоизлияния на коже;
  • Головные боли;
  • Болезненность и припухлость суставов;
  • Невозможность активных движений из-за болей, вызываемых кровоизлияниями в мышцы и суставы.

Геморрагический синдром развивается при следующих заболеваниях крови:

1. Тромбоцитопеническая пурпура;

2. Болезнь Виллебранда;

3. Болезнь Рандю-Ослера;

4. Болезнь Гланцманна;

5. Гемофилии А, В и С;

6. Геморрагический васкулит;

9. Апластическая анемия;

10. Прием больших доз антикоагулянтов.

Язвенно-некротический синдром

  • Боль на слизистой оболочке полости рта;
  • Кровотечения из десен;
  • Невозможность принимать пищу из-за боли в ротовой полости;
  • Повышение температуры тела;
  • Ознобы;
  • Неприятных запах изо рта;
  • Выделения и дискомфорт во влагалище;
  • Боль в анусе;
  • Трудность дефекации.

Язвенно-некротический синдром развивается при гемобластозах, апластических анемиях, а также лучевой и цитостатической болезнях.

Интоксикационный синдром

  • Общая слабость;
  • Лихорадка с ознобами;
  • Длительное стойкое повышение температуры тела;
  • Недомогание;
  • Сниженная трудоспособность;
  • Боли на слизистой ротовой полости;
  • Симптомы банального респираторного заболевания верхних дыхательных путей.

Интоксикационный синдром развивается при гемобластозах, гематосаркомах (болезнь Ходжкина, лимфосаркомы) и цитостатической болезни.

Оссалгический синдром

Синдром белковой патологии

  • Головные боли;
  • Ухудшение памяти и внимания;
  • Сонливость;
  • Боль и онемение в ногах и руках;
  • Кровоточивость слизистых оболочек носа, десен и языка;
  • Гипертония;
  • Ретинопатия (нарушение функционирования глаз);
  • Почечная недостаточность (на поздних стадиях заболеваний);
  • Нарушение функций сердца, языка, суставов, слюнных желез и кожи.

Синдром белковой патологии развивается при миеломе и болезни Вальденстрема.

Сидеропенический синдром

  • Извращение обоняния (человеку нравятся запахи выхлопных газов, мытого бетонного пола и др.);
  • Извращение вкуса (человеку нравится вкус мела, извести, древесного угля, сухих круп и т.д.);
  • Трудность проглатывания пищи;
  • Мышечная слабость;
  • Бледность и сухость кожи;
  • Заеды в углах рта;
  • Тонкие, ломкие, вогнутые ногти с поперечной исчерченностью;
  • Тонкие, ломкие и сухие волосы.

Сидеропенический синдром развивается при болезнях Верльгофа и Рандю-Ослера.

Плеторический синдром

Синдром развивается при эритремии и болезни Вакеза.

Желтушный синдром

Синдром лимфаденопатии

  • Увеличение и болезненность различных лимфатических узлов;
  • Явления интоксикации (лихорадка, головная боль, сонливость и др.);
  • Потливость;
  • Слабость;
  • Сильное похудение;
  • Боли в области увеличенного лимфоузла из-за сдавления расположенных рядом органов;
  • Свищи с выделением гнойного содержимого.

Синдром развивается при хроническом лимфолейкозе, лимфогранулематозе, лимфосаркомах, остром лимфобластном лейкозе и инфекционном мононуклеозе.

Синдром гепато-спленомегалии

  • Ощущение тяжести в верхней части живота;
  • Боли в верхней части живота;
  • Увеличение объема живота;
  • Слабость;
  • Сниженная работоспособность;
  • Желтуха (на поздней стадии заболеваний).

Синдром развивается при инфекционном мононуклеозе, наследственном микросфероцитозе, аутоиммунной гемолитической анемии, серповидно-клеточной и В12-дефицитной анемии, талассемии, тромбоцитопениях, острых лейкозах, хронических лимфо- и миелолейкозах, сублейкемическом миелозе, а также при эритремии и болезни Вальденстрема.

Синдром кровопотери

Синдром развивается при гемобластозах, геморрагических диатезах и апластических анемиях.

Лихорадочный синдром

Гематологический и костномозговой синдромы

Синдром энтеропатии

Синдром артропатии

  • Припухлость и утолщение пораженного сустава;
  • Болезненность в пораженном суставе;
  • Остеопороз.

Анализы при заболевании крови (показатели крови)

1. Общий анализ крови с определением таких параметров, как:

  • Общее количество лейкоцитов, эритроцитов и тромбоцитов;
  • Подсчет лейкоформулы (процент базофилов, эозинофилов, палочкоядерных и сегментоядерных нейтрофилов, моноцитов и лимфоцитов в 100 подсчитанных клетках);
  • Концентрация гемоглобина крови;
  • Изучение формы, размеров, окрашенности и других качественных характеристик эритроцитов.

2. Подсчет количества ретикулоцитов.

3. Подсчет количества тромбоцитов.

5. Время кровотечения по Дьюку.

6. Коагулограмма с определением таких параметров, как:

  • Количество фибриногена;
  • Протромбиновый индекс (ПТИ);
  • Международное нормализованное отношение (МНО);
  • Активированное частичное тромбопластиновое время (АЧТВ);
  • Каолиновое время;
  • Тромбиновое время (ТВ).

7. Определение концентрации факторов свертывания.

8. Миелограмма – взятие костного мозга при помощи пункции с последующим приготовлением мазка и подсчетом количества различных клеточных элементов, а также их процентного соотношения на 300 клеток.

Определение некоторых часто встречающихся заболеваний крови

Инфекционные болезни крови

Вирусное заболевание крови

Хроническая патология крови

Наследственные (генетические) заболевания крови

Системные заболевания крови

Аутоиммунные заболевания крови

  • Аутоиммунная гемолитическая анемия;
  • Лекарственный гемолиз;
  • Гемолитическая болезнь новорожденных;
  • Гемолиз после переливания крови;
  • Идиопатическая аутоиммунная тромбоцитопеническая пурпура;
  • Аутоиммунная нейтропения.

Заболевание крови – причины

Лечение заболеваний крови

Профилактика болезней крови

  • Выявление и лечение заболеваний, сопровождающихся кровотечениями;
  • Своевременное лечение глистных инвазий;
  • Своевременное лечение инфекционных заболеваний;
  • Полноценное питание и прием витаминов;
  • Избегание ионизирующего излучения;
  • Избегание контакта со вредными химическими веществами (краски, тяжелые металлы, бензол и т.д.);
  • Избегание стрессов;
  • Профилактика переохлаждения и перегревания.

Часто встречающиеся заболевания крови, их лечение и профилактика - видео

Заболевания крови: описание, признаки и симптомы, течение и последствия, диагностика и лечение - видео

Болезни крови (анемия, геморрагический синдром, гемобластозы): причины, признаки и симптомы, диагностика и лечение - видео

Полицитемия (многокровие), повышенный уровень гемоглобина в крови: причины и симптомы заболевания, диагностика и лечение – видео

Что такое патологические клетки крови

Одной из главных причин патологических изменений эритроцитов, помимо кровопотерь, токсинов, гемолизинов и др., является нарушение нормальной деятельности костного мозга.

При одних заболеваниях, при повышенной реактивности организма, происходит усиленная деятельность костного мозга - гиперфункция; взамен погибших зрелых эритроцитов в ток крови попадают молодые клетки - происходит регенерация эритроцитов.

О регенеративной способности костного мозга судят по наличию в мазке полихроматофильных эритроцитов, ретикулоци-товг нормобластов. При ряде заболеваний кровотворной системы в периферической крови обнаруживают эритроциты с тельцами Жолли (Jolly), эритроциты с кольцами Кебота (Cabot).

К дегенеративным формам эритроцитов относятся анизоци-ты, пойкилоциты, эритроциты с базофильной зернистостью.

Эритроциты гиперхромные, т. н. мегалоциты и мегалобла-сты, относятся к т. н. эмбриональной форме кровотворения. В токе крови можно часто обнаружить4 клетки, указывающие на регенерацию и дегенерацию одновременно.

При различных заболеваниях крови эритроциты изменяют свою форму, величину, окраску. Появление в крови эритроцитов различной величины называется анизоцитозом.

Эритроциты размером меньше нормальных называются микроцитами, больше нормальных - макроцитами. Эритроциты способны принять самую разнообразную форму: колбы, груши, гимнастических гирь, полулуния; такие элементы называются пойкилоцитами Анизоцитоз и пойкилоцитоз бывают при пернициозной анемии, гемолитической желтухе.

В окрашенном препарате крови встречаются эритроциты анемичные окрашенные слабее, чем нормальные, при гипохромных анемиях. При гиперхромных анемиях обнаруживаются эритроциты, окрашенные ярче, чем нормальные. При анемиях, кровопотерях, когда происходит большой расход эритроцитов, ток крови, вследствие усиленной деятельности костного мозга, пополняется не совсем зрелыми формами эритроцитов, обладающими способностью окрашиваться одновременно и кислой и щелочной красками, вследствие чего они имеют серовато-фиолетовый цвет.

Такие эритроциты носят название полихроматофилов, а способность так окрашиваться называется полихромазией.

При анемии Аддисон-Бирмера могут встречаться эритроциты, в протоплазме которых еще сохранились остатки ядра а виде петель, колец, окрашиваемых по Романовскому в"фиолетовый цвет, так называемые кольца Кебота, либо единичных мелких обломков ядра в виде точек - тельца Жолли, окрашивающиеся в вишнево-красный цвет.

К дегенеративным формам относятся эритроциты с базофильною зернистостью. Это мелкие зерна в эритроците, окрашивающиеся в синеватый цвет. Хорошо заметна базофильная зернистость в эритроците при окраске по Е. Фрейфельд.

Ретикулоциты. В окрашенном бриллиант-крезиловой синькой препарате крови можно видеть эритроциты с тонкой синей сеточкой или зернистостью по всей клетке либо только в центре. Эта сеточка называется ретикулярной, или сетчатой, гранулофиламентозной субстанцией (substantia granulofilamentosa). Эритроциты с такой субстанцией называются ретикулоцитами.

Ретикулоциты - молодые, незрелые эритроциты, появляющиеся в крови при повышенной деятельности костного мозга. Для подсчета ретикулоцитов можно пользоваться окуляром, в который вложен кусочек бумаги с вырезанным квадратным отверстием. Сосчитывают в разных местах препарата 1000 эритроцитов и количество одновременно обнаруженных ретикулоцитов. В нормальной крови на 1000 эритроцитов бывает 2-4 ретикулоцита.

Отличия абсолютного и относительного лимфоцитоза в анализе крови

Несколько лет назад я написал, чем отличаются вирусные и бактериальные инфекции по общему анализу крови, каких именно клеток становится больше и меньше при различных инфекциях. Статья получила определенную популярность, но нуждается в некотором уточнении.

Еще в школе учат, что количество лейкоцитов должно составлять от 4 до 9 миллиардов (× 10 9) на литр крови. В зависимости от своих функций лейкоциты делятся на несколько разновидностей, поэтому лейкоцитарная формула (соотношение разных видов лейкоцитов) в норме у взрослого человека выглядит так:

  • нейтрофилы (суммарно 48-78%):
    • юные (метамиелоциты) - 0%,
    • палочкоядерные - 1-6%,
    • сегментоядерные - 47-72%,
  • эозинофилы - 1-5%,
  • базофилы - 0-1%,
  • лимфоциты - 18-40% (по другим нормам 19-37%),
  • моноциты - 3-11%.

Например, в общем анализе крови выявлено 45% лимфоцитов. Это опасно или нет? Нужно ли бить тревогу и искать перечень болезней, при которых в крови увеличивается количество лимфоцитов? Об этом и поговорим сегодня, потому что в одних случаях такие отклонения в анализе крови являются патологическими, а в других - не представляют опасности.

Этапы нормального кроветворения

Посмотрим результаты общего (клинического) анализа крови парня 19 лет, больного сахарным диабетом 1 типа. Анализ сделан в начале февраля 2015 года в лаборатории «Инвитро»:

Анализ, показатели которого рассматриваются в этой статье

Красным фоном в анализе выделены показатели, отличающиеся от нормальных. Сейчас в лабораторных исследованиях слово «норма » используется реже, оно заменено на «референсные значения » или «референтный интервал ». Так делается, чтобы не запутать людей, потому что в зависимости от используемого метода диагностики одно и то же значение может быть как нормальным, так и отклонением от нормы. Референсные значения подбираются таким образом, чтобы им соответствовали результаты анализов 97-99% здоровых людей.

Рассмотрим результаты анализа, выделенные красным.

Гематокрит

Гематокрит - доля объёма крови, приходящаяся на форменные элементы крови (эритроциты, тромбоциты и тромбоциты). Поскольку эритроцитов численно намного больше (например, число эритроцитов в единице крови превышает число лейкоцитов в тысячу раз), то фактически гематокрит показывает, какую часть объема крови (в %) занимают эритроциты. В данном случае гематокрит на нижней границе нормы, а остальные показатели эритроцитов в норме, поэтому слегка сниженный гематокрит можно считать вариантом нормы.

Лимфоциты

В вышеупомянутом анализе крови 45,6% лимфоцитов. Это слегка выше нормальных значений (18-40% или 19-37%) и называется относительным лимфоцитозом. Казалось бы, это патология? Но давайте посчитаем, сколько лимфоцитов содержится в единице крови и сравним с нормальными абсолютными значениями их количества (клеток).

Число (абсолютное значение) лимфоцитов в крови равно: (4,69 × 10 9 × 45,6%) / 100 = 2,14 × 10 9 /л. Эту цифру мы видим в нижней части анализа, рядом указаны референтные значения: 1,00-4,80. Наш результат 2,14 можно считать хорошим, потому что находится практически по середине между минимальным (1,00) и максимальным (4,80) уровнем.

Итак, у нас имеется относительный лимфоцитоз (45,6% больше 37% и 40%), но нет абсолютного лимфоцитоза (2,14 меньше 4,8). В данном случае относительный лимфоцитоз можно считать вариантом нормы.

Нейтрофилы

Общее количество нейтрофилов считается как сумма юных (в норме 0%), палочкоядерных (1-6%) и сегментоядерных нейтрофилов (47-72%), суммарно их 48-78%.

Этапы развития гранулоцитов

В рассматриваемом анализе крови общее количество нейтрофилов равно 42,5%. Мы видим, что относительное (в %) содержание нейтрофилов ниже нормы.

Посчитаем абсолютное количество нейтрофилов в единице крови:

Относительно должного абсолютного количества клеток лимфоцитов имеется некоторая путаница.

1) Данные из литературы.

2) Референтные значения количества клеток из анализа лаборатории «Инвитро» (см. анализ крови):

3) Поскольку вышеуказанные цифры не совпадают (1.8 и 2.04), попробуем сами рассчитать пределы нормальных показателей числа клеток.

  • Минимально допустимое количества нейтрофилов - это минимум нейтрофилов (48%) от нормального минимума лейкоцитов (4 × 10 9 /л), то есть 1.92 × 10 9 /л.
  • Максимальное допустимое количество нейтрофилов - это 78% от нормального максимума лейкоцитов (9 × 10 9 /л), то есть 7.02 × 10 9 /л.

В анализе пациента 1.99 × 10 9 нейтрофилов, что в принципе соответствует нормальным показателям числа клеток. Однозначно патологическим считается уровень нейтрофилов ниже 1.5 × 10 9 /л (называется нейтропения ). Уровень между 1.5 × 10 9 /л и 1.9 × 10 9 /л считается промежуточным между нормой и патологией.

Нужно ли паниковать, что абсолютное число нейтрофилов находится около нижней границы абсолютной нормы? Нет. При сахарном диабете (и еще при алкоголизме) слегка сниженный уровень нейтрофилов вполне возможен. Чтобы убедиться, что опасения необоснованны, нужно проверить уровень молодых форм: в норме юных нейтрофилов (метамиелоцитов) - 0% и палочкоядерных нейтрофилов - от 1 до 6%. В комментарии к анализу (на рисунке не поместилось и обрезано справа) указано:

При исследовании крови на гематологическом анализаторе патологических клеток не обнаружено. Количество палочкоядерных нейтрофилов не превышает 6%.

У одного и того же человека показатели общего анализа крови довольно стабильны: если нет серьезных проблем со здоровьем, то результаты анализов, сделанные с интервалом в полгода-год, будут весьма похожи. Аналогичные результаты анализа крови у обследуемого были и несколько месяцев назад.

Таким образом, рассмотренный анализ крови с учетом сахарного диабета, стабильности результатов, отсутствия патологических форм клеток и отсутствия повышенного уровня молодых форм нейтрофилов можно считать практически нормальным. Но если возникают сомнения, нужно наблюдать пациента дальше и назначить повторный общий анализ крови (если автоматический гематологический анализатор не способен выявить все типы патологических клеток, то анализ должен быть на всякий случай дополнительно исследован под микроскопом вручную). В самых сложных случаях, когда ситуация ухудшается, для изучения кроветворения берут пункцию костного мозга (обычно из грудины).

Справочные данные при нейтрофилы и лимфоциты

Главная функция нейтрофилов - борьба с бактериями путем фагоцитоза (поглощения) и последующего переваривания. Погибшие нейтрофилы составляют существенную часть гноя при воспалении. Нейтрофилы являются «простыми солдатами » в борьбе с инфекцией:

  • их много (ежедневно в организме образуется и поступает в кровоток около 100 г нейтрофилов, это количество увеличивается в несколько раз при гнойных инфекциях);
  • живут недолго - в крови циркулируют недолго (12-14 часов), после чего выходят в ткани и живут еще несколько дней (до 8 суток);
  • много нейтрофилов выделяется с биологическими секретами - мокротой, слизью;
  • полный цикл развития нейтрофила до зрелой клетки занимает 2 недели.

Нормальное содержание нейтрофилов в крови у взрослого человека:

  • юные (метамиелоциты) нейтрофилы - 0%,
  • палочкоядерные нейтрофилы - 1-6%,
  • сегментоядерные нейтрофилы - 47-72%,
  • всего нейтрофилов - 48-78%.

Лейкоциты, содержащие специфические гранулы в цитоплазме, относятся к гранулоцитам. Гранулоцитами являются нейтрофилы, эозинофилы, базофилы .

Агранулоцитоз - резкое уменьшение числа гранулоцитов в крови вплоть до их исчезновения (меньше 1 × 10 9 /л лейкоцитов и меньше 0.75 × 10 9 /л гранулоцитов).

К понятию агранулоцитоза близко понятие нейтропении (сниженное количество нейтрофилов - ниже 1.5 × 10 9 /л). Сравнивая критерии агранулоцитоза и нейтропении, можно догадаться, что только выраженная нейтропения приведет к агранулоцитозу . Чтобы дать заключение «агранулоцитоз », недостаточно умеренно сниженного уровня нейтрофилов.

Причины сниженного количества нейтрофилов (нейтропении):

  1. тяжелые бактериальные инфекции,
  2. вирусные инфекции (нейтрофилы не борются с вирусами. Пораженные вирусом клетки уничтожаются некоторыми разновидностями лимфоцитов),
  3. угнетение кроветворения в костном мозге (апластическая анемия - резкое угнетение или прекращение роста и созревания всех клеток крови в костном мозге ),
  4. аутоиммунные заболевания (системная красная волчанка, ревматоидный артрит и др.),
  5. перераспределение нейтрофилов в органах (спленомегалия - увеличение селезенки),
  6. опухоли кроветворной системы:
    • хронический лимфолейкоз (злокачественная опухоль, при которой происходит образование атипичных зрелых лимфоцитов и их накопление в крови, костном мозге, лимфоузлах, печени и селезёнке. Одновременно угнетается образование всех остальных клеток крови, особенно с коротким жизненным циклом - нейтрофилов);
    • острый лейкоз (опухоль костного мозга, при которой происходит мутация стволовой кроветворной клетки и ее неконтролируемое размножение без дозревания в зрелые формы клеток. Может поражаться как общая стволовая клетка-предшественница всех клеток крови, так и более поздние разновидности клеток-предшественниц по отдельным кровеносным росткам. Костный мозг заполнен незрелыми бластными клетками, которые вытесняют и подавляют нормальное кроветворение);
  7. недостатков железа и некоторых витаминов (цианокобаламин, фолиевая кислота ),
  8. действие лекарственных препаратов (цитостатики, иммунодепрессанты, сульфаниламиды и др.)
  9. генетические факторы.

Увеличение числа нейтрофилов в крови (выше 78% или больше 5.8 × 10 9 /л) называется нейтрофилией (нейтрофилезом, нейтрофильным лейкоцитозом ).

4 механизма нейтрофилии (нейтрофилеза):

  1. усиление образования нейтрофилов:
    • бактериальные инфекции,
    • воспаление и некроз тканей (ожоги, инфаркт миокарда ),
    • хронический миелолейкоз (злокачественная опухоль костного мозга, при которой происходит неконтролируемое образование незрелых и зрелых гранулоцитов - нейтрофилов, эозинофилов и базофилов, вытесняющих здоровые клетки ),
    • лечение злокачественных опухолей (например, при лучевой терапии),
    • отравления (экзогенного происхождения - свинец, змеиный яд , эндогенного происхождения - уремия, подагра, кетоацидоз),
  2. активная миграция (досрочный выход) нейтрофилов из костного мозга в кровь,
  3. перераспределение нейтрофилов из пристеночной популяции (возле кровеносных сосудов) в циркулирующую кровь: при стрессе, интенсивной мышечной работе.
  4. замедление выхода нейтрофилов из крови в ткани (так действуют гормоны глюкокортикоиды, которые угнетают подвижность нейтрофилов и ограничивают их способность проникать из крови в очаг воспаления).

Для гнойных бактериальных инфекций характерно:

  • развитие лейкоцитоза - увеличения общего количества лейкоцитов (выше 9 × 10 9 /л) преимущественно за счет нейтрофилии - роста числа нейтрофилов;
  • сдвиг лейкоцитарной формулы влево - увеличение количества молодых [юных + палочкоядерных ] форм нейтрофилов. Появление юных нейтрофилов (метамиелоцитов) в крови является признаком тяжелой инфекции и доказательством, что костный мозг работает с большим напряжением. Чем больше молодых форм (особенно юных), тем сильнее напряжение иммунной системы;
  • появление токсической зернистости и других дегенеративных изменений нейтрофилов (тельца Деле, цитоплазматические вакуоли, патологические изменения ядра ). Вопреки устоявшемуся названию, эти изменения вызваны не «токсическим эффектом » бактерий на нейтрофилы, а нарушением созревания клеток в костном мозге. Созревание нейтрофилов нарушается из-за резкого ускорения по причине чрезмерной стимуляции иммунной системы цитокинами, поэтому, например, в большом количестве токсическая зернистость нейтрофилов появляется при распаде опухолевой ткани под влиянием лучевой терапии. Другими словами, костный мозг готовит молодых «солдат» на пределе своих возможностей и отправляет их «в бой» раньше срока.

Рисунок с сайта bono-esse.ru

Лимфоциты являются вторыми по численности лейкоцитами крови и бывают разных подвидов.

Краткая классификация лимфоцитов

В отличие от нейтрофилов-«солдат», лимфоциты можно отнести к «офицерам». Лимфоциты «обучаются» дольше (в зависимости от выполняемых функций они образуются и размножаются в костном мозге, лимфоузлах, селезенке) и являются высокоспециализированными клетками (распознавание антигена, запуск и осуществление клеточного и гуморального иммунитета, регуляция образования и деятельности клеток иммунной системы ). Лимфоциты способны выходить из крови в ткани, затем в лимфу и с ее током возвращаться обратно в кровь.

Для целей расшифровки общего анализа крови надо иметь представление о следующем:

  • 30% всех лимфоцитов периферической крови - короткоживущие формы (4 суток). Это большинство B-лимфоцитов и Т-супрессоры.
  • 70% лимфоцитов - длительно живущие (170 дней = почти 6 месяцев). Это остальные виды лимфоцитов.

Разумеется, при полном прекращении кроветворения сначала в крови падает уровень гранулоцитов, что становится заметным именно по количеству нейтрофилов , поскольку эозинофилов и базофилов в крови и в норме очень мало. Чуть позже начинает снижаться уровень эритроцитов (живут до 4 месяцев) и лимфоцитов (до 6 месяцев). По этой причине поражение костного мозга выявляется по тяжелым инфекционным осложнениям, которые очень трудно лечить.

Поскольку развитие нейтрофилов нарушается раньше остальных клеток (нейтропения - меньше 1.5 × 10 9 /л), то в анализах крови чаще всего выявляется именно относительный лимфоцитоз (больше 37%), а не абсолютный лимфоцитоз (больше 3.0 × 10 9 /л).

Причины повышенного уровня лимфоцитов (лимфоцитоза) - больше 3.0 × 10 9 /л:

  • вирусные инфекции,
  • некоторые бактериальные инфекции (туберкулез, сифилис, коклюш, лептоспироз, бруцеллез, иерсиниоз ),
  • аутоиммунные заболевания соединительной ткани (ревматизм, системная красная волчанка, ревматоидный артрит ),
  • злокачественные опухоли,
  • побочное действие лекарств,
  • отравления,
  • некоторые другие причины.

Причины сниженного уровня лимфоцитов (лимфоцитопении) - меньше 1.2 × 10 9 /л (по менее строгим нормам 1.0 × 10 9 /л):

  • апластическая анемия,
  • ВИЧ-инфекция (первично поражает разновидность Т-лимфоцитов, называемую T-хелперами),
  • злокачественные опухоли в терминальной (последней) фазе,
  • некоторые формы туберкулеза,
  • острые инфекции,
  • острая лучевая болезнь,
  • хроническая почечная недостаточность (ХПН) в последней стадии,
  • избыток глюкокортикоидов.

/ Патфизо / Белова Л. А / Патология красной крови

ПАТОЛОГИЯ КРАСНОЙ КРОВИ

Кровь представляет собой сложную постоянно меняющуюся внутрен­нюю среду организма. Кровь переносит кислород, углекислоту, пита­тельные вещества, гормоны, продукты метаболизма тканей. Она игра­ет важнейшее значение в поддержании онкотического и осмотического давления; кислотно-основного равновесия. Другими словами, кровь принимает важнейшее участие в дыхании, обмене веществ, обеспече­нии процессов секреции и экскреции, иммунологической защите орга­низма, а также наряду с ЦНС выступает в качестве интегративной системы, объединяющей организм в единое целое. Кровь состоит из жидкой части с растворенными в ней белка­ми,органическими и неорганическими соединениями; и клеточных эле­ментов.Жидкая часть крови постоянно обменивается за счет поступ­ления в нее лимфы и тканевой жидкости.Соотношение клеточных эле­ментов и жидкой части крови определяемое гематокритом составляет 44-48%. При патологических процессах происходит закономерное изменение количественного и качественного состава клеток и плазмы крови.Эти изменения является чрезвычайно важным патогенетическим моментом многих патологических процессов, а кроме того выступают в качест­ве выжных диагностических симптомов той или иной болезни. Сегодняшняя лекция посвещена патологическим изменениям красной крови полицетемия.

А Н Е М И Я В норме в периферической крови содержится у мужчин 4,5-5,0х10 12 у женщин 4,0-4,5х10 12 эритроцитов в 1 л, иг/л гемоглоби­на.Причем содержание гемоглобина у женщин так же несколько меньше чем у мужчин. Анемия, или малокровием,называют состояние,характеризующееся уменьшением колличества эритроцитов или снижением содержания гемоглобина в (единица объема) крови.(пояснить) Особенностью истинной анемии является абсолютное уменьшение колличество эритроцитов и гемоглобина в организме. От истиной анемии следует отличать гидремию- т.е. разжижение крови за счет обильного притока тканевой жидкости,наблюдаемое у больных в пери­од схождения отеков. При этом в следствие разведения крови коли­чество эритроцитов и гемоглобина в единице объема уменьшается, но общее их количество в организме при этом остается нормальным. Может быть и наоборот. При истинной анемии (снижение общего количества эритроцитов и гемоглобина в организме), за счет сгуще­ния крови, вызванного потерей жидкости - количество гемоглобина и эритроцитов в единице объёма крови может оставаться нормальным или даже повышенным. В зависимости от функционального состояния костного мозга, его способности к регенерации и компенсации анемического состояния различают следующие типы анемий: регенераторная, гипорегенератор­ную анемию. Большинство анемий являются регенераторными. Они соп­ровождаются компенсаторным увеличением эритропоэза в кроветворном аппарате. Кроветворение при этом идет за счет образования нор­мальных эритроцитов. При этом увеличивается пролиферация эрит­ро-нормобластических элементов, ускоренное превращение нормоблас­тов в эритроциты и увеличенное вымывание их в кровь. В результате кровь пополняется молодыми формами эритроцитов - ретикулоцитами. Гипорегенераторной анемией называется такая форма, при которой компенсаторные возможности костного мозга истощены и количество вновь возникающих эритроцитов уменьшается. В периферической крови уменьшается количество молодых форм эритроцитов.В том случае если ретикулоциты из крови практически исчезают,говорят о арегенера­торной форме анемии.Чаще всего эти формы анамии возникают за счет повреждения красного костного мозга - при интоксикациях,лучевых поражениях,замещении красного костного мозга желтым (при лейко­зах). Для того чтобы определить характер анемии по регинераторной способности костного мозга нужно расчитать количество ретикулоци­тов в куб.мм В норме количество ретикулоцитов колеблется в преде­лах 1,0х,0х10 11 в л.Если количество ретикулоцитов у боль­ного находится в этих пределах то говорят о регинераторном или о нормогинераторном типе анемии,если количество ретикулоцитов мень­ше 100 тыс. то это гипорегенераторный тип. По уровню цветного показателя анемии делятся на нормохромные, гипо- и гиперхромные. Напомню, что цветной показатель отражает на­сыщенность гемоглобином отдельного эритроцита.Цветной показатель является нормальным если он колеблется в пределах от 0,9 до 1,1.Если ЦП меньше 0,9 то анемия гипохромная и это означает, что эритроциты недонасыщены гемоглобином. Если ЦП больше 1,1 то гово­рят о геперхромной анемией, сопровождающейся увеличением гемогло­бинезации эритроцитов. Цветной показатель расчитывается врачем в момент прочтения об­щего анализа крови больного и поэтому нужно хорошо представлять как это делается.И так ЦП есть отношение концентрации гемоглобина количеством эритроцитов.Однако если использовать обсолютные цифры - миллион - эритроцитов и гемоглобин то это оказывается неудобным для устного пересчета. Поэтому пользуются относительным - % вели­чинами.Для расчета цветного показателя за 100 % эритроцитов и для мужчин и для женщин принимают 5000. За 100% гемоглобина принима­ется 166,7 г/л. Давайте подсчитаем для примера ЦП - эритроцитов 4,1х10 , гемоглобина 120,0 г/л.% стало быть 1-20%. Таким образом для того чтобы перевести количество эритроцитов из обсо­лютных чисел в относительные нужно количество эритроцитов в миллионах умножить на 20%. 4,1х20=82%. Давайте переведем гемоглобин из г/л в % в норме.

120,0 - Х Х= 100 х 120,0 = 0,6х120,0 = 72% 166,7 Составим общее уравнение ЦП=гем .=120х0,6 = 72 =0,87 эр. 4,1х20 82 таким образом в данном случае можно говорить о гипохромной анемии.

ПАТОГЕНЕЗ И ЭТИОЛОГИЯ АНЕМИЙ. По этиопатогенезу все анемии делятся на 3 большие группы.

I.Анемии обусловленные кровопотерями - ПОСТГЕМОРАГИЧЕСКИЕ. II.Анемии связанные с нарушением процесса образования эритроцитов. III.Анемии связанные с повышением разрушения эритроцитов. Каждая из этих больших патогенетических групп делится на подг­руппы. I.Постгеморрагическая анемия делится на 2 подгруппы: I.Острая.2.Хроническая. Причинами острой кровопотери являются различные травмы, сопро­вождающиеся повреждением кровеносных сосудов или кровотечения из внутренних органов. Чаще всего из ХКТ, легких,почек и т.д.Патоге­нез острой кровопотери складывается из двух групп обстоятельств: 1.При кровопотере происходит быстрое снижение объема циркули­рующей крови, что ведет к падению артериального давления и прочим растройствам кровообращения, которые приводят к гипоксии циркуля­торного типа. 2. На определенном этапе постгеморрагической анемии происходит уменьшение кислородной ёмкости крови связанное с снижением коли­чества в ней эритроцитов и гемоглобина и развитие гипоксии анеми­ческого типа.Нарушения тем выраженнее, чем больше скорость крово­потери.Картина крови после острой постгеморрагической кровопотери зависит от времени прошедшей после кровопотери и стадии компенса­ции объема циркулирующей жидкости.Напомню стадии компенсации ОЦК - 1. Выброс депонированных эритроциторных масс,в сосудистое русло происходит непосредственно вслед за кровопотерей.2.Стадия гидре­мии- поступления в сосудистое русло интерстичиальной жидкости развивается примерно через 1 сутки продолжается 3-4 суток.3.Стадия стимуляции костномозгового кровотварения.Как изменяются ос­новные показатели характеризующие состояние красной крови на раз­личных стадиях.(подумаете сами).Это домашнее задание.Напомню осно­вные показатели: гематактичное число,количество эритроцитов,кон­центрация гемоглобина,ЦП, и количество ретикулоцитов. Хроническая, постгеморрагическая анемия.Развивается после небольших,но длительных или повторных кровопотерь.Чаще всего наблюдается при хронических кровотечениях из органов ЖКТ при язвен­ной болезни,раке,геморое и неспецифическом язвенном колите,а так же при почечных и маточных кровотечениях.Зачастую источник крово­потери настолько незначителен,что остается невыясненным.Что бы представить себе каким образом малые кровопотери могут способс­твовать значительной анемизации,достаточно привести такие данные: суточное количество железа необходимого для репаративных процес­сов в костном мозге и поддержания баланса гемоглобина составляет

5 мг.И нужно сказать, что организму не всегода бывает просто изв­лечь эти 5 мг из окружающей среды.Так вот это колличество железа содержится в 10 мл крови. Следовательно ежедневная потеря 2-3 чайных ложек крови не только лишает организм его суточной потреб­ности в железе,но и с течением времени приводит к значительному истощению "железного фонда" организма, в результате чего развивае­тся тяжелая железодифицитная анемия. По скольку хроническая анемия характеризуется медленно потерей крови то при ней практически не происходит изменения ОЦП и следовательно растройств гемодинамики. Картина крови при ХПГ анемии измениется двухфазно.В первую фазу нарушается главным образом образование гемоглобина и наруше­ние им эритроцитов.Поэтому картина крови здесь следующая:гипох­ромная анемия с резким снижением ЦП до 0,6-0,4.Количество ретику­лоцитов находится около нижней границе нормы,т.е. анемия регенераторная,при этом в крови встречаются и дегинеративные формы эрит­роцитов макро и микроциты,анизоцитоз и пойкилоцитоз.Количество тромбоцитов нормально или несколько снижено.Количество лейкоцитов несколько сниженно(если нет дополнительных обстоятельств вызываю­щих лейкоцитоз). Следующая фаза характеризуется нарушением обра­зования самих эритроцитов. При этом их колличество крови снижае­тся,а вот ЦП возрастает и приближается к нормальному.Следствием угнетения кроветворения является уменьшение количество ретикуло­цитов т.е. анемия становится гипорегинераторной, в крови отмеча­ются все дегенераторные формы эритроцитов.

АНЕМИИ СВЯЗАННЫЕ С НАРУШЕНИЕМ ОБРАЗОВАНИЯ ЭРИРОЦИТОВ Анемии развивающиеся в следствие нарушения процесса кровооб­разования по патогенезу можно разделить на:1.Анемии развивающиеся в следствие дефицита веществ необходимых для образования эритро­цитов. 2. Анемии развивающиеся в следствии повреждения красного костного мозга, (ионизирующее излучение,интоксикация). 3. Анемии обусловленные наличием генетического дефекта сис­темы гемопоэза.

4. Метапластические анемии развивающиеся вследствии вытесне­ния кровного кровеного ростка - желтым при его злокачественном пе­рерождении (лейкозы).

1.гр.а)ЖЕЛЕЗОДИФИЦИТНЫЕ АНЕМИИ.Группа железодифицитных анемий объединяет многочисленные анемические синдромы,основным патогене­тическим фактором которых является недостаток железа в организме (сидеропения, гипосидероз) .Причины ведущие к недостатку железа в организме могут быть обусловлены: 1.Недостатком железа в пище.2.Нарушением усвоения железа в желудочно кишечном тракте.3.Избыточными потерями железа. 4.Повышением потребности организма в железе. 5.Нарушением утилицация Fе костного мозга. Нарушение поступления железа развивается например при снижении кислотностижелудочного сока (соляная кислота необходима для железа в легкоусвояемую форму), а так же в следствие нарушения всасывания железа в кишечнике при энтеритах, резекциях кишечника и гиповитаминоз - С и т.д.Избыточные потери железа из организма связаны чаще всего с хроническими кровотечениями в том числе менструальными.Же­лезо может терятся потом при повышенном потоотделении у работников горячих производств,в тропиках. Повышенная потребность в железе в физиологических условиях возникает в период бурного роста детский и юношеский возраст,у женщин в период беременности и лактации. К патологическим состояниям сопровождающихся увелечением потребности железа можно отнести хронические инфекции (туберку­лез),интексикации (азотемия), гиповитаминозы,эндокринные наруше­ния (гипотиреоз), злокачественные новообразования.

Железодифицитные анемии делятся на первичны - сенциальные, и вторичные - симптоматические. К первичным анемиям относится ранний (юношеский) хлороз возникающий у девушек в период полового созревания (бледная немочь), и поздний хлороз возникающий так же у женщин в период климокса.Симптоматические железодифицитные ане­мии развеваются на фоне какого либо зоболевания:хр.энтерита,неф­рита, в связи с резекцией желудка, при хр.кровопотере,инфекциях. Картина крови. Наиболее характерной особенностью картины крови при хлорозах и симптоматических анемиях является гипохромия

Резкое снижение гемоглобина в эритроцитах при незначительном снижении количества самих эритроцитов. В тяжелых случаях гемогло­бин снижается дог/л количество же эритроцитов редко снижа­ется ниже.Таким образом ЦП снижается до 0,5-0,6 и даже ниже. Встречается множество дегенеративных форм эритроцитов глав­ным образом микроцитов.Количество ретикулоцитов обычно снижено.

В 12 (ФОЛИЕВО) - ДЕФИЦИТНЫЕ АНЕМИИ. Класической формой В12 дефецитной анемией является так назы­ваемое злокачественное или пернициозное малокровие Адисона-Бирме­ра.Болезнь характеризуется триадой синдромов - нарушением функций пищеварительного тракта, поражением нервной и кроветворной систе­мы.В 1929 г. Касл показал значение в кроветворении особого гемо­поэтического вещества. Это вещество попадает в организм в резуль­тате взаимодействия "внешнего фактора", поступающего в организм с пищей и "внутреннего фактора", вырабатываемого слизистой оболоч­кой желудка. Образующееся вещество всасывается и откладывается в печени.В дальнейшем было установленно, что "внешним фактором Касла" является витамин В12 - цианкобиламин.Внутренний фактор, необ­ходимый для всасывания витамина В12, представляет собой гастрому­копротеид, содержащийся в нормальном желудочном соке и слизистой оболочке фундальной части желудка.У больных анемией Адисона Бир­мера гастромукопротеид в желудочном соке отсутствует. В норме ви­тамин В12 после проникновения в кровеносное русло соединяется с глобулином плазма и в виде В12-протеинового комплекса откладыва­ется в печени. Витамин В12 и фолиевая кислота участвуют в метабо­лизме клеточных ядер, они необходимы для синтеза так называемых тимонуклеиновых кислот в частности фолиновой кислоты.При недоста­тке фолиновой кислоты в костном мозге нарушается синтез ДНК и РНК в ядрах клеток эритроцитарного ряда. И происходит нарушение мито­тических процессов в них.В костном мозге возникает мегалобласти­ческий тип кроветворения.Конечная клетка мегалобластического ряда это крупная клетка напоминающая ранее эмбриональные кровенные клетки.Клетки мегалобластического ряда содержат большое количест­во гемоглобина т.е.объем их много больше эритроцита.Но в целом эти клетки выполняют свою функцию по доставке кислорода к тканям значительно хуже обычных эритроцитов.Это связано с несколькими обстоятельствами. Во первых в связи с большим диаметром мегалоци­ты не попадают в мелкие капиляры. Во вторых большой диаметр и ша­рообразная форма затрудняет процесс оксигенации кислородом в лег­ких и отдачи кислорода в тканях.Наконец, так как эти клетки со­держат ядра то они сами потребляют гораздобольшое количество энергии чем эритроциты.Мегалобластический тип кровотворения ха­рактеризуется гораздо меньшей интенсивностью процессов клеточного деления.Если пронормобласт в процессе созревания совершает 3 деления в результате чего из него образуются 8 эритроцитов, то про­мегалобласт совершает всего одно деления и образует 2 мегалоцита. Кроеме того вовремя созревания происходит распад множества клеток мегалобластического ряда, за счет этого происходит накопление свободного гемоглобина и продуктов его распада в плазме крови (а пропродукты эти напомню токсичны для организма).Таким образом не­смотря на вынужденныю перестройку кроветворения на мегалобластический тип кроветворения процессы гемопоэза не успевают в услови­ях недостатка витамина В12 компенсировать процессы разрушения клеток крови в результате чего развивается анемия. Вопрос о этиологии и ранних звеньях патогенеза болезни Ади­сона Бирмера до настоящего времени не решон. Предполагается, что он связан либо и врожденной недостаточностью железистого аппарата

фундальной части желудка, что проявляется с возрастном в виде преждевременной инволюции этих желез продуцирующих гастромукопро­теин. Либо с аутоиммунными процессами обусловленными образованию аутоанител к гастромукопротеину, или комплексу гастромукопротеина и витамина В12.В12 дефицитная анемия может развиваться и при дру­гих видах патологии кроме Болезни Адисона-Бирмера сопровождающих­ся авитаминозом В12. К авитаминозу может вести элементарная недостаточность, заболевания желудка и кишечника сопровоэждающиеся нарушением процессов всасывания, в том числе гельминтазы в частности поражение лентецом широким (при котором в силу каких то обстоятельств возникает выражение гиповитаминоз) Относительный недостаток витамина может возникать и при физиологических состоя­ниях сопровождающихся повышеннной потребности в вит. В12 - детс­ком возрасте, беременности, а так же и при некоторых заболеваниях в частности хр. инфекциях.

Процессы костномозгового кроветворения и картина крови при всех формах недостаточности витамина В12 изменяется приблизительно однотипно.Происходит переход на мегалобластический тип кровотво­рения в результате чего в переферической крови обнаруживаются ме­галоциты и мегалобласты (незрелые клетки мегалоцитарного ря­да).Обнаружение мегалоцитов и мегалобластов является патогномоничным признаком В12 дефицитной анемии. В следствии того что мегало­циты велики по объему и стало быть содержат гемоглобина много больше чем обычные эритроциты цветной показатель при анемии этого типа больше единици, то есть анемия геперхромная.Регинераторные процессы в костном мозге резко снижены. Ретикулоцитов в крови ма­ло, значит анемия носит гипорегинераторный или в тяжелых случаях арегинераторный характер. В заключение скажу что болезнь Адисона Бирмера еще полвека назад считалась очень тяжолой и обсолютно неподдающемся лечению заболеванием в 100% случаев заканчивавшейся смертью больного. Лишь в конце 20 годов ХХ века её начали кое как лечить сырой пе­ченью различных животных - содержащей в большом количестве вит. В12. В настоящее время после получения медикаментозных препаратов вит. В12 лечение этой болезни не составляет больших проблем.Иск­лючением из этого является так называемая В12 ахрестическая ане­мия, в отличие от болезни Адисона Бирмера при этом заболевании отсутствуют симптомы поражения ЖНТи нервной системы.При ахрести­ческой анемии поступление вит. В12 в организм не нарушается со­держание его в плазме крови остается нормальным или повышен­ным.Патогенез анемии в данном случае связан с нарушением способ­ности костного мозга утилизировать В12 и использовать его в про­цессах кроветворения. По типу ахрестических могут протекать и железодифицитные анемии особенностью которых является высокое со­держание железа в плазме крови.Однако это железо в связи с теми или иными наследственно-обусловленными дефектами ферментативных систем не может быть утиливизоровано и использованно для синтеза гемоглобина.

ГЕМОЛИТИЧЕСКИЕ АНЕМИИ. Гемолитические анемии включают в себя целый ряд анемических состояний, которые возникают при увеличении распада эритроци­тов.По патогенезу гемолитические анемии можно разделить на три группы:1. Анемии при которых гемолиз эритроцитов обусловлен син­тезом патологических эритроцитов в костном мозге. К этой группе болезней можно отнести серповидноклеточную анемию,таласэмию или средиземноморскую анемию,наследственный сфероцитоз, гемоглобинозы и множество других наследственно-обусловленных заболеваний. 2.Вторая группа гемолитических анемий обусловлена увеличени­ем активности органов ответственных за разрушение эритроци­тов.Эритроциты при этом могут быть совершенно нормальными.В норме старые эритроциты уничтожаются в ретикулоэндотелиоцитарных орга­нах, главным образом в меньшей степени в лимфоузлах и печени. Селезенку образно называют кладбищем эритроцитов.Так вот елси это кладбище(активное кладбище) работает более активно, уничтожается больше чем нужно колличество эритроцитов и возникает анемия.Гемо­литическая активность селезенки например при спленомегалии,неко­торых хр. инфекционных заболеваниях и т.д.

3.Третья патогенетическая группа гемолитических анемий раз­вивается вследствие воздействия на эритроциты таких патогенных факторов, которые в норме на них не действуют.Например, гемолити­ческих ядов:фосфора,мышьяковистного водорода,сапонинов,яда гадюки и др;антиэритроциторных антител - чужеродных при переливании не­совместимой крови,материнских при резус-несовместимости, или ау­тоантител при патологии иммунокомпетентной системе.Кроме того ге­молиз может быть следствием инекционного процесса - классическим примером которого является малярия.Любой тип гемолитической ане­мии сопровождается выделением в кровь из разрушенных эритроцитов большое количества гемоглобина и накопление в крови продуктов его распада, в частности билирубина. Поэтому гемолитической анемии в большинстве случаев сопутствует и гемолитическая желтуха со всеми неблагоприятными проявлениями. Картина крови при гемолитических анемиях может быть самой разнообразной в зависимости от вида заболевания и его стадии. В большинстве случаев анемия бывает регинераторного типа,нормоблос­тическим типом кроветворения.

ЭРИТРОЦИТОЗЫ Эритроцитозами называется увеличением количества эритроцитов в крови выше 5,0*10 12 в л.Эритроцитозы различают абсолютные и относительные.При обсолютных эритроцитах увеличивается общее ко­личество эритроцитов в организме.При относительнх эритроцитах су­марного количества эритроцитов не увеличивается, но за счет сгу­щения крови происходит увеличение колличества эритроцитов в еди­нице объема крови.Причиной абсолютных эритроцитозов является ком­пенсаторное увеличение образования эритроцитов в костном мозге в условиях хр.гипоксии.Это наблюдается у людей живущих в горах и при заболевниях ведущих к гипоксии.Особенно при хр. заболеваниях легких.Патогенетическое значение эритроцитозов. Увеличение коли­чества эритроцитов повышает кислородную емкость крови и имеет не­которое приспособительное значение.Но одновременно при этом уве­личивается вязкость крови,а значит увеличивается нагрузка на сердце и ухудшаются процессы микроциркуляции - это негативные яв­ления. И при высокой степени эритроцитозов эти отрицательные ма­менты явно валируют над положительными.

ЭРИТРЕМИЯ(болезнь Вакеза) Эритремия в отличие от эритроцитозе является злокачественным заболеванием опухолевого характера.С опухолеподобным разрастанием красного кровенного ростка.Эритремиямия в этом случае носит гиперрегинераторный характер. Увеличение количества эритроцитов при­водит к увеличению вязкости крови и резкому нарушению гемодинами­ки.Естественно эритроцитоз в этом случае не имеет никакого прис­пособительного значения и целикои и полностью является явлением патологическим.

Задача №1

Для изучения предложены два микропрепарата: 1) кожица лука и 2) крыло комара.

1. При работе с каким из этих препаратов будет использована лупа?

2. При изучении какого из двух этих объектов будет использоваться микроскоп?

Задача №2

Для выполнения практической работы предложены временный и постоянный препараты.

1. Как вы отличите временный препарат от постоянного?

2. Почему для изучения некоторых объектов лучше использовать временный микропрепарат?

Задача №3

В поле зрения при изучении препарата «Перекрест волос» (волосы содержат большое количество пигмента – темно-коричневого цвета) видны при малом увеличении следующие образования: толстые полоски темно-коричневого цвета, расположенные крест-накрест, пузырьки разного диаметра темного цвета, длинные нитевидные образования с четкими краями, но бесцветные.

1. Где в поле зрения представлены артефакты?

2. Что на данном препарате является объектом исследования?

Задача №4

Рассматриваются три вида клеток: клетки кожицы лука, клетка бактерии и клетка эпителия кожи лягушки.

1. Какие из перечисленных клеток можно уже четко рассмотреть при увеличении микроскопа (7х8)?

2. Какие клетки можно увидеть только при увеличении (7х40) и при иммерсии?

Задача №5

Исходя из предложенного стихотворения:

«С лука сняли кожицу-

Тонкую, бесцветную,

Положили кожицу

На стекло предметное,

Микроскоп поставили,

Препарат – на столик…»

1. О приготовлении какого препарата идет речь (временного или постоянного)?

2. Какие важные моменты в приготовлении препарата здесь не отмечены?

Задача №6

Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении.

1. С чем это может быть связано?

2. Как исправить данную ошибку?

Задача №7

Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно.

1. С чем может быть связано появление темного пятна?

2. Как исправить ошибку?

Задача №8

Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла.

1. Как это могло произойти?

2. Какие правила надо соблюдать при микроскопировании?

Задача №9

Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900.

1. Какие использованы объективы и окуляры в первом и во втором случаях?

2. Какие объекты они позволяют изучать?

Занятие №2. БИОЛОГИЯ ЭУКАРИОТИЧЕСКОЙ КЛЕТКИ. СТРУКТУРНЫЕ КОМПОНЕНТЫ ЦИТОПЛАЗМЫ

Задача №1

Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая.

1. Присутствие каких микроэлементов определяет красный цвет крови у животных?

2. С чем связан голубой цвет крови у моллюсков?

Задача №2

Зерна пшеницы и семена подсолнечника богаты органическими веществами.

1. Почему качество муки связано с содержанием в ней клейковины?

2. Какие органические вещества находятся в семенах подсолнечника?

Задача №3

Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском, зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражений центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии – в этих органоидах клеток очень многих тканей обнаруживаются патологические включения.

1. Функционирование какого органоида нейрона нарушено?

2. По каким признакам вы это выявили?

Задача №4

У больного выявлена редкая болезнь накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи. Это аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.

1. Функционирование какого органоида клеток нарушено?

2. По каким признакам это можно выявить?

Задача №5

При патологических процессахобычно в клетках увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, входящие гидролазы теряют свою активность, т.к. в цитоплазме слабощелочная среда.

1. Какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке?

2. Какой органоид клетки выполняет функцию синтеза лизосом?

Задача №6

Выявлено наследственное заболевание, связанное с дефектами функционирования органоида клетки, приводящее к нарушениям энергетических функций в клетках – нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обоих полов.

1. В каком органоиде произошли изменения?

2. Почему данное заболевание передается только по материнской линии?

Задача №7

Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен.

1. Как объяснить этот факт, исходя из функциональной роли этого органоида в клетке?

2. С чем связана нежизнеспособность организма в данном случае?

Задача №8

У зимних спящих сурков и зимующих летучих мышей число митохондрий в клеткахсердечной мышцы резко снижено.

1. С чем связано данное явление?

2. Для каких еще животных характерно такое явление?

Занятие №3. ЯДРО, ЕГО СТРУКТУРНЫЕ КОМПОНЕНТЫ. РАЗМНОЖЕНИЕ КЛЕТОК

Задача № 1

Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида.

1. Одинаково ли содержание в этих клетках ДНК?

2. Увеличится ли количество органоидов после слияния яйцеклетки со сперматозоидом?

Задача №2

Гены, которые должны были включиться в работу в периоде G 2 остались неактивными.

1. К каким изменениям в клетке это приведет?

2. Отразится ли это на ходе митоза?

Задача №3

В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46).

1. Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления?

2. Какое количество наследственного материала будут иметь дочерние ядра по окончании митоза?

Задача №4

После оплодотворения образовалась зигота 46ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу. Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза.

2. Какими могут быть фенотипические особенности этого организма?

Задача №5

После оплодотворения образовалась зигота 46ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров). Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза.

1. Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы?

2. Какой фенотип может иметь этот индивид?

3. Действие каких факторов могло привести к данной мутации?

Задача №6

При делении клетки митозом в одной из двух образовавшихся новых клеток не оказалось ядрышка.

1. Какое строение имеет ядрышко?

2. К чему может привести данное явление?

Задача №7

Число ядерных пор постоянно меняется.

1. Какое строение имеет ядерная пора?

2. С чем связано изменение числа пор в ядерной оболочке?

5. В медико-генетическую консультацию обратилась женщина 20 лет. Ее родная сестра больна тяжелой формой серповидно-клеточной анемии, у пациентки никаких заболеваний крови не было, супруг здоров. Женщину интересует, каков риск развития этой болезни у планируемого ребенка. При обследовании крови супругов на типы гемоглобина получены результаты: у мужчины HbA 98 %, HbS 1 %; у женщины HbA 70 %, HbS 29 %.
Каков ответ на вопрос женщины? Были ли основания для беспокойства? Возможна ли профилактика при планировании конкретного ребенка? Связано ли заболевание с полом ребенка?
6. Какие группы крови невозможны у детей от родителей со следующими группами крови по системе АВ0: I(0) и III(В)? III(В) и IV(АВ)? IV(АВ) и IV(АВ)? II(А) и III(В)? Какое значение при рождении второго ребенка имеет установленная группа крови первого?
7. В медико-генетическую консультацию обратилась беременная, которая сообщила, что ее сестра больна фенилкетонурией, сама наследственные заболевания отрицает. Супруг здоров. В его роду были браки между близкими родственниками, но случаев фенилкетонурии не отмечалось.
Какова вероятность появления фенилкетонурии у ребенка? Имеет ли значение вероятный пол ребенка? Можно ли лечить эту болезнь после ее появления?

Глава 4
ПАТОЛОГИЯ КЛЕТКИ

Клетка – структурная и функциональная единица всех живых организмов. В клетке сосредоточено уникальное свойство живого – способность размножаться, видоизменяться и реагировать на изменения окружающей среды. Эукариотическая клетка состоит из трех основных компонентов: плазматической мембраны, ядра, цитоплазмы. Главной функцией клетки является осуществление обмена со средой веществом, энергией и информацией, что подчинено в конечном счете задаче сохранения клетки как целого при изменении условий существования (рис. 4.1 на с. 52).
Органоиды клетки, обладая определенными морфологическими особенностями, обеспечивают основные проявления жизнедеятельности клетки. С ними связаны дыхание и энергетические запасы (митохондрии), синтез белков (рибосомы, шероховатая эндоплазматическая сеть), накопление и транспорт липидов и гликогена, обезвреживание токсинов (гладкая эндоплазматическая сеть), синтез продуктов и их выделение из клетки (комплекс Гольджи), внутриклеточное пищеварение и защитная функция (лизосомы). Важно подчеркнуть, что функции субклеточных органелл не строго разграничены, поэтому они могут участвовать в разных внутриклеточных процессах.
Все перечисленное делает познание основ патологии клетки абсолютно необходимым для понимания закономерностей развития патологии на уровне тканей, органов и систем, болезни в целом – на уровне организма человека.

Рис. 4.1. Общее строение эукариотической клетки и ее основных органелл :
1 – секреторные гранулы (накопление продуктов секреции); 2 – центриоли (центр полимеризации микротрубочек); 3 – гладкая эндоплазматическая сеть (детоксикация и синтез стероидов); 4 – лизосомы (внутриклеточное переваривание); 5 – митохондрия (синтез АТФ и стероидов); 6 – сферические единицы (превращение энергии); 7 – липидные капельки (накопление); 8 – ядрышко (синтез рРНК); 9 – ядерная оболочка (разделение хроматина и цитоплазмы); 10 – шероховатая эндоплазматическая сеть (синтез и сегрегация белков, посттрансляционные изменения); 11 – комплекс Гольджи (конечные посттрансляционные изменения, упаковка и транспорт)

4.1. ПОВРЕЖДЕНИЕ КЛЕТКИ: ПРИЧИНЫ И ОБЩИЕ МЕХАНИЗМЫ

Повреждение – процесс, проявляющийся нарушением структурной и функциональной организации живой системы, вызванный различными причинами. В наиболее общем смысле повреждение на любом уровне представляет собой такое изменение структуры и функции, которое не способствует, а мешает жизни и существованию организма в окружающей среде. Повреждение является начальным моментом в развитии патологии, внутренней стороной взаимодействия причинного фактора с организмом. В этом смысле термины «этиологический фактор», «болезнетворный фактор» и «повреждающий фактор» являются синонимами.
Любое повреждение проявляется на различных уровнях:
молекулярном (повреждение клеточных рецепторов, молекул ферментов, нуклеиновых кислот вплоть до их дезинтеграции);
субклеточном – ультраструктурном (повреждение митохондрий, эндоплазматической сети, мембран и других ультраструктур вплоть до их деструкции);
клеточном (различные дистрофии из-за нарушения разных видов обмена с возможным развитием некроза по типу рексиса или лизиса клетки);
тканевом и органном (дистрофические изменения в большинстве клеток и строме с возможным развитием некроза (по типу инфаркта, секвестра и др.);
организменном (болезнь с возможным смертельным исходом).
Иногда дополнительно выделяют уровень тканевых комплексов, или гистионов, включающих в свой состав сосуды микроциркуляторного русла (артериола, капилляры, венула) и питаемые ими клетки паренхимы, соединительную ткань и терминальные нервные окончания. Морфологически повреждение может быть представлено двумя патологическими процессами: дистрофией и некрозом, которые нередко являются последовательными стадиями (рис. 4.2).
Причины повреждения клетки. Вовлечение клеток во все патологические процессы, происходящие в организме, объясняет и универсальность причин, вызывающих повреждение клеток, которые соответствуют по структуре классификации этиологических факторов болезни вообще (табл. 4.1).

Рис. 4.2. Обратимые и необратимые клеточные повреждения :
А – нормальная клетка: 1 – ядро; 2 – лизосома; 3 – эндоплазмолитическая сеть; 4 – митохондрии.
Б – обратимое повреждение: 1 – объединение внутримембранных частиц;
2 – разбухание эдоплазматической сети;
3 – дисперсия рибосом; 4 – разбухание митохондрий; 5 – уменьшение плотности митохондрий; 6 – самопереваривание лизосом; 7 – агрегация ядерного хроматина; 8 – выпячивание.
В – необратимые повреждения: 1 – миелиновые тельца; 2 – лизис эндоплазматической сети; 3 – дефект клеточной мембраны; 4 – большая разряженность митохондрий; 5 – пикноз ядра; 6 – разрыв лизосом и аутолиз

Причиной повреждения клетки может стать фактор как экзогенной, так и эндогенной природы. Применительно к клетке наиболее важные механические и физические агенты (механическая травма, колебания температуры окружающей среды и атмосферного давления, радиация, электрический ток, электромагнитные волны); химические агенты (изменение pH, снижение содержания кислорода, соли тяжелых металлов, органические растворители и др.); всевозможные инфекционные агенты; иммунные реакции, генетические нарушения, дисбаланс питания.

Таблица 4.1
Этиологические факторы повреждения клетки


Психогенные факторы повреждения для организма на уровне клеток воспринимаются через вторичные воздействия, которые являются физическими или химическими по своей природе. Например, при эмоциональном стрессе повреждение миокарда объясняется воздействием адреналина и изменением электрической активности симпатических волокон автономной нервной системы.

Общий патогенез клеточного повреждения. С точки зрения развития процессов в самой общей форме повреждения клетки могут проявляться нарушениями клеточного обмена веществ, развитием дистрофии, парабиоза и, наконец, некроза, когда клетка погибает.
Повреждения клетки могут быть обратимыми и необратимыми . Например, обратимым является повреждение лизосом в клетках эпителия кишечника под влиянием эндотоксина микроорганизмов кишечной группы. После прекращения интоксикации лизосомы в поврежденной клетке восстанавливаются. В случае повреждения клеток энтеровирусом повреждение выражается дегрануляцией лизосом, которую может вызвать, например, любая вирусная инфекция.
По своему течению повреждения могут быть острыми и хроническими . Функциональные проявления острого повреждения клетки делятся на преддепрессионную гиперактивность, парциальный некроз и тотальное повреждение (клеточный некроз).
Первое и наиболее общее неспецифическое выражение повреждения клетки при действии любого агента – это нарушение состояния неустойчивого равновесия клетки и среды, являющегося общей характеристикой всего живого, независимо от уровня его организации.
Преддепрессионная гиперактивность (по Ф. З. Меерсону) возникает вследствие обратимого повреждения клетки умеренными воздействиями патогенных факторов. В результате в мембране клетки происходят неспецифическое возбуждение и усиление деятельности органелл, в первую очередь митохондрий. Это приводит к усилению окисления субстратов и синтеза АТФ, сопровождается повышением резистентности клетки к патологическому фактору. Если воздействие этого фактора ограничено, может произойти ликвидация повреждения с последующим восстановлением первоначальной структуры и функции. Считают, что после такого воздействия в генетическом аппарате клетки сохраняется информация о происшедшем воздействии, так что в дальнейшем при повторном действии этого же фактора приспособление клетки значительно облегчается.
В случае парциального некроза поврежденная часть клетки отделяется от функционирующей части вновь образующейся мембраной и уничтожается фагоцитами. После этого структура и функция клетки восстанавливаются за счет гиперплазии субклеточных единиц.
Если повреждающий фактор имеет выраженную интенсивность и время действия, то происходит тотальное повреждение клетки, что приводит к прекращению функции митохондрий, нарушению клеточного транспорта и всех энергозависимых процессов. В дальнейшем происходит массивное разрушение лизосом, выход гидролитических ферментов в цитоплазму и расплавление остальных органелл, ядра и мембран. Фаза острого повреждения клетки, когда еще сохраняется небольшой градиент концентрации ионов между цитоплазмой и внеклеточной средой, называется агонией клетки. Она необратима и завершается некрозом клетки, при этом резкое увеличение проницаемости и частичное разрушение клеточных мембран способствуют доступу в клетку из окружающей среды ферментов, которые продолжают разрушение всех ее структурных элементов.

Специфическое и неспецифическое в повреждении клетки. Специфические повреждения можно усмотреть при анализе любого его вида. Например, при механической травме – это нарушение целостности структуры ткани, при аутоиммунной гемолитической анемии – изменение свойств мембраны эритроцитов под влиянием гемолизина и комплемента, при радиационном повреждении – образование свободных радикалов с последующим нарушением окислительных процессов.
Неспецифическими повреждениями клетки, т. е. мало зависящими от вида повреждающего фактора, являются следующие:
нарушение неравновесного состояния клетки и внешней среды;
нарушение структуры и функции мембран: проницаемости и мембранного транспорта, мембранного электрического потенциала, рецепторного аппарата, формы клеток;
нарушение обмена и электролитного состава клетки и ее отдельных частей;
нарушение активности ферментных систем клетки (вплоть до ферментативного разрушения клетки);
уменьшение объема и интенсивности биологического окисления;
нарушение хранения и передачи генетической информации;
снижение специфической функции (для специализированных клеток).
Повреждение специфических функций, нужных для организма в целом, прямо не отражается на судьбе клеток, но определяет суть изменений в органах и системах, поэтому рассматривается в курсе частной патологии.
Большинство повреждений на субклеточном уровне имеет неспецифический характер и не зависит от вида повреждающих факторов. Так, например, в миокарде при острой ишемии, воздействии адреналина, отравлении морфином, разлитом гнойном перитоните, облучении наблюдаются аналогичные изменения поврежденных клеток в виде набухания митохондрий и разрушения их мембран, вакуолизации эндоплазматической сети, очаговой деструкции миофибрилл и появления избыточного количества липидных включений. Такие идентичные изменения структур под влиянием различных факторов называются стереотипными.
При одинаковом воздействии на весь орган какого-либо повреждающего фактора обычно проявляется весь спектр возможных состояний клетки от практически нормального и даже усиленно функционирующего до гибели (некроза). Это явление называется мозаичностью . Например, при действии вируса ветряной оспы на клетки кожи некрозы развиваются в виде мелких очагов, образуя характерную сыпь в виде пузырьков (везикул).
Повреждения на клеточном уровне иногда могут иметь специфический характер. Специфические изменения обусловлены внутриклеточной репликацией вируса (с появлением в ядре или цитоплазме включений, представляющих собой или скопления вирусных частиц, или реактивные изменения клеточного вещества в ответ на их репликацию), опухолевым метаморфозом и врожденными или приобретенными ферментопатиями, приводящими к накоплению в клетке нормальных метаболитов в избыточном количестве или аномальных в виде включений.

4.2. ПАТОЛОГИЯ КЛЕТОЧНЫХ МЕМБРАН

Основной структурной частью мембраны является липидный бислой, состоящий из фосфолипидов и холестерина с включенными в него молекулами разных белков. Снаружи клеточная мембрана покрыта слоем гликопротеидов. К функциям мембраны клетки относятся избирательная проницаемость, реакции межклеточных взаимодействий, поглощение и выделение специфических веществ (рецепция и секреция). Плазматическая мембрана – место приложения физических, химических, механических раздражителей внешней среды и сигналов информационного характера из внутренней среды организма. Информационная функция обеспечивается рецепторами мембраны, защитная – самой мембраной, контактная – клеточными стыками (рис. 4.3).
Способность формировать мембраны является решающей в образовании клетки и ее субклеточных органелл. Любое нарушение сопровождается изменением проницаемости клеточных мембран и состояния цитоплазмы поврежденной клетки. Повреждение клеточных мембран может быть обусловлено деструкцией их липидных или белковых (ферментных и рецепторных) компонентов.
К патологии клетки могут вести нарушения следующих функций мембран: мембранного транспорта, проницаемости мембран, коммуникации клеток и их «узнавания», подвижности мембран и формы клеток, синтеза и обмена мембран (схема 4.1).

Рис. 4.3. Структура мембраны клетки (схема):
1 –двойной слой фосфолипидов; 2 – мембраные белки; 3 – полисахаридные цепи

Схема 4.1. Общие механизмы повреждения мембран клеток [Литвицкий П. Ф. , 1995]


Повреждение липидных компонентов клеточных и субклеточных мембран возникает несколькими путями. Важнейшими из них являются перекисное окисление липидов, активация мембранных фосфолипаз, осмотическое растяжение белковой основы мембран, повреждающее воздействие иммунных комплексов.
Мембранный транспорт предполагает перенос ионов и других субстратов против избытка (градиента) их концентрации. При этом нарушаются функция клеточных насосов и процессы регуляции обмена веществ между клеткой и окружающей ее средой.
Энергетической основой работы клеточных насосов являются процессы, зависящие от энергии АТФ. Эти ферменты «вмонтированы» в белковую часть клеточных мембран. В зависимости от вида проходящих по каналу ионов различают Na – K-АТФазу, Ca – Mg-АТФазу, Н – АТФазу и др. Особое значение имеет работа первого насоса, результатом которой является превышение концентрации К + внутри клетки приблизительно в 20–30 раз по сравнению с внеклеточной. Соответственно этому концентрация Na + внутри клетки приблизительно в 10 раз меньше, чем снаружи.
Повреждение Na – K-насоса вызывает освобождение К + из клетки и накопление в ней Na + , что характерно для гипоксии, инфекционных поражений, аллергии, снижения температуры тела и многих других патологических состояний. С транспортом Na + и К + тесно связан транспорт Ca 2+ . Интегральное выражение этих нарушений хорошо иллюстрируется на примере гипоксии миокарда, которая проявляется прежде всего патологией митохондрий.
Известно участие Са 2+ в освобождении медиаторов аллергии из лабиринтов (тучных клеток). По современным данным, их аллергическая травма сопровождается разжижением мембраны, разрыхлением и увеличением проводимости кальциевых каналов. Ионы кальция, проникая в большом количестве внутрь клетки, способствуют освобождению гистамина и других медиаторов из гранул.
Морфологически нарушение проницаемости плазматической мембраны проявляется усиленным образованием ультрамикроскопических пузырьков, что приводит к дефициту поверхности или, напротив, увеличению поверхности за счет мембран микропиноцитозных пузырьков. В отдельных случаях выявляются утолщение и извитость участков мембраны, отделение части цитоплазмы, окруженной мембраной, от клетки. Это свидетельствует об активизации цитоплазматической мембраны. Другим наблюдаемым при электронной микроскопии признаком повреждения мембраны является образование крупных микропор – «брешей», что ведет к набуханию клетки, перерастяжению и разрыву клеточных мембран.
С формой и подвижностью мембраны непосредственно связаны изменения формы и подвижности клетки в целом, хотя при патологии обычно происходит упрощение формы клеточной поверхности (например, потеря микроворсинок энтероцитами).
Отдельного внимания заслуживает патология, развивающаяся при повреждении межклеточных взаимодействий. Поверхность мембраны клетки содержит множество рецепторов, воспринимающих различные раздражители. Рецепторы представлены сложными белками (гликопротеидами), способными свободно перемещаться как по поверхности клеточной мембраны, так и внутри ее. Механизм рецепции является энергозависимым, поскольку для передачи сигнала с поверхности внутрь клетки требуется АТФ. Особый интерес представляют рецепторы, одновременно являющиеся поверхностными антигенами-маркерами определенных типов клеток.
При разных патологических процессах (воспаление, регенерация, опухолевый рост) могут изменяться поверхностные антигены, причем различия могут касаться как типа антигена, так и его доступности со стороны внеклеточного пространства. Например, повреждения гликолипидов мембраны делают ее более доступной воздействию антител.
Патология клеточной рецепции ведет к нарушению восприятия информации. Например, наследственное отсутствие апо-Е– и апо-В-рецепторов у клеток печени и жировой клетчатки ведет к развитию семейных типов ожирения и гиперлипопротеинемии. Аналогичные дефекты выявлены при некоторых формах сахарного диабета.
Межклеточное взаимодействие и кооперация клеток определяются состоянием клеточных стыков, которые могут повреждаться при различных патологических состояниях и болезнях. Клеточные стыки выполняют три главные функции: межклеточную адгезию, «тесное общение» клеток и герметизацию слоя эпителиальных клеток. Межклеточная адгезия ослабевает при опухолевом росте уже на ранних этапах онкогенеза и является одним из критериев роста опухоли. «Тесное общение» заключается в прямом обмене клеток через щелевидные стыки информационными молекулами. Дефекты «тесного общения» играют значительную роль в поведении и возникновении злокачественных опухолей. Нарушения межмембранных связей клеток тканевых барьеров (кровь – мозг, кровь – легкие, кровь – желчь, кровь – почки) ведут к увеличению проницаемости плотных стыков клеток и повышенной проницаемости барьеров.

4.3. ПАТОЛОГИЯ КЛЕТОЧНОГО ЯДРА

Ядро обеспечивает координацию работы клетки в интерфазу, хранение генетической информации, передачу генетического материала при клеточном делении. В ядре происходят репликация ДНК и транскрипция РНК. При повреждении могут наблюдаться отек ядра, его сморщивание (пикноз), разрыв и разрушение (кариорексис и кариолизис). Ультрамикроскопическое исследование позволяет различить несколько типовых нарушений ядра и генетического аппарата клетки.
1. Изменение структуры и размеров ядра зависит от содержания в нем ДНК. В нормальном интерфазном ядре содержится диплоидный (2n) набор хромосом. Если после окончания синтеза ДНК не происходит митоза, появляется полиплоидия – кратное увеличение набора ДНК. Полиплоидия может встречаться в нормально функционирующих клетках печени, почек, в миокарде; она особенно ярко выражена в тканях при регенерации и опухолевом росте, причем чем более злокачественна опухоль, тем более выражена гетероплоидия. Анеуплоидия – изменение в виде неполного набора хромосом – связана с хромосомными мутациями. Ее проявления встречаются в большом количестве в злокачественных опухолях.
Вещество ДНК в ядре распределено неравномерно. В наружных отделах ядер находят конденсированный хроматин (гетерохроматин), который считается неактивным, а в остальных отделах – неконденсированный (эухроматин), активный. Конденсация хроматина в ядре рассматривается как признак метаболической депрессии и предвестник гибели клетки. К патологическим изменениям ядра относят также его токсическое набухание. Уменьшение размеров ядра характерно для снижении обмена веществ в клетке и сопутствует ее атрофии.
2. Изменение формы ядра может вызываться цитоплазматическими включениями (перстневидные клетки при слизьобразующем раке, ожиревшие гепатоциты), образованием множественных выпячиваний ядра в цитоплазму вследствие повышения синтетической активности ядра (полиморфизм ядер при воспалении, опухолевом росте). Как крайний вариант в ядре могут встречаться включения (цитоплазматические или вирусные).
3. Изменение количества ядер проявляется многоядерностью в гигантских клетках при воспалении (клетки Пирогова–Лангханса при туберкулезе), опухолях (клетки Штернберга–Березовского при лимфогранулематозе). Безъядерность может наблюдаться в нормальных клетках (эритроциты, тромбоциты), в жизнеспособных фрагментах опухолевых клеток и как свидетельство гибели клеток (кариолизис).
4. Изменение структуры и размеров ядрышек заключается в их увеличении и повышении плотности (соответствует повышению функциональной активности) или дезорганизации (встречается при энергодефиците в клетке и сопровождается патологией митозов).
5. Изменение ядерной оболочки (двойной мембраны) состоит в нарушениях связи ее с эндоплазматической сетью, выпячивании и искривлении обеих мембран, изменении количества и размеров пор, появлению включений в межмембранном пространстве. Данные изменения свидетельствуют о вовлеченности ядра в повреждение клетки и характерны для интоксикации, вирусных инфекций, радиационных повреждений, опухолевого перерождения клетки.
6. Процессы клеточного деления (митоза) могут нарушаться при различных воздействиях, при этом может страдать любое из его звеньев. Наибольшую известность получила классификация патологии митозов, предложенная И.А. Аловым (1972):
I тип – повреждение хромосом (задержка деления в профазе);
II тип – повреждение митотического аппарата (задержка в метафазе);
III тип – нарушение цитотомии (задержка в телофазе).
Можно считать установленным, что задержка вступления клеток в митоз возникает в основном в связи с нарушением их метаболизма, в частности синтеза нуклеиновых кислот и белков, а нарушение хромосом при репродукции клетки, обнаруживаемое в условиях патологии, – вследствие разрыва цепей ДНК и расстройства репродукции ДНК хромосом.
Особенности реакции клетки на повреждающий фактор зависят как от его характеристики, так и от типа клетки по ее способности к делению, обеспечивающей возможность рекомпенсации. Считают, что в организме имеется три категории специализированных клеток по их способности к делению.
Клетки I категории с самого рождения организма достигают высокоспециализированного состояния структур за счет минимизации функций. В организме отсутствует источник возобновления этих клеток в случае их дисфункции. К таким клеткам относятся нейроны. Клетки I категории способны к внутриклеточной регенерации, в результате которой восстанавливаются утраченные части клеток, если сохранены ядерный аппарат и трофическое обеспечение.
Клетки II категории – это высокоспециализированные клетки, выполняющие какие-либо определенные функции и затем либо «изнашивающиеся», либо слущивающиеся с различных поверхностей, причем иногда очень быстро. Подобно клеткам I категории, они не способны размножаться, однако в организме имеется механизм для их непрерывного воспроизводства. Такие клеточные популяции называют обновляющимися, а состояние, в котором они находятся, – стационарным. К таким клеткам относятся, например, клетки, выстилающие большую часть кишечника.