Человеческий мозг – это центральная часть нервной системы. Здесь осуществляется управление всеми процессами, происходящими в организме, на основе информации, поступающей от внешнего мира.

Нейроны головного мозга – это структурные функциональные единицы нервной ткани, обеспечивающие способность живых организмов приспосабливаться к изменениям внешней среды. Человеческий мозг состоит из нейронов.

Функции нейронов головного мозга:

  • передача информации об изменениях внешней среды;
  • запоминание информации на длительный срок;
  • создание образа внешнего мира на основе полученных сведений;
  • организация оптимального поведения человека.

Все эти задачи подчинены одной цели – обеспечению живому организму успеха в борьбе за существование.

В этой статье будут рассмотрены следующие особенности нейронов:

  • строение;
  • взаимосвязь между собой;
  • виды;
  • развитие в разные периоды жизни человека.

В левом полушарии мозга содержится на 200 000 000 нейронов больше, чем в правом.

Строение нервной клетки

Нейроны в мозге имеют неправильную форму, они могут быть похожи на листик или цветок, обладать различными бороздами и извилинами. Цветовая палитра также разнообразна. Ученые полагают, что существует взаимосвязь между цветом и формой клетки и ее назначением.

Например, рецептивные поля клеток проекционной области зрительной коры имеют вытянутую форму, это помогает им избирательно реагировать на отдельные фрагменты линий с различной ориентацией в пространстве.

Каждая клетка имеет тело и отростки. В мозговой ткани принято выделять серое и белое вещество. Тела нейронов вместе с глиальными клетками, обеспечивающими защиту, изоляцию и сохранение структуры нервной ткани, составляют серое вещество. Отростки, организованные в пучки в соответствии с функциональным назначением, – это белое вещество.

Соотношение нейронов и глии у человека равно 1:10.

Виды отростков:

  • аксоны – имеют удлиненный вид, на конце ветвятся на терминали – нервные окончания, которые необходимы для передачи импульса к другим клеткам;
  • дендриты – более короткие, чем аксоны, также имеют разветвленную структуру; через них нейрон получает информацию.

Благодаря такому строению нейроны в головном мозге «общаются» между собой и объединяются в нейронные сети, которые и образуют мозговую ткань. И дендриты, и аксоны постоянно растут. Эта пластичность нервной системы лежит в основе развития интеллекта.

Нерв – это скопление многочисленных аксонов, принадлежащих разным нервным клеткам.

Синаптические связи

В основе формирования нейронных сетей лежит электрическое возбуждение, которое состоит из двух процессов:

  • запуск электрического возбуждения от энергии внешних воздействий – происходит за счет особой чувствительности мембран, расположенных на дендритах;
  • запуск клеточной активности на основании полученного сигнала и воздействие на другие структурные единицы нервной системы.

Быстродействие нейронов исчисляется несколькими миллисекундами.

Нейроны связаны между собой посредством специальных структур – синапсов. Они состоят из пресинаптической и постсинаптической мембран, между которыми находится синаптическая щель, заполненная жидкостью.

По характеру действия синапсы могут быть возбуждающими и тормозными. Передача сигналов может быть химической и электрической.

В первом случае на пресинаптической мембране синтезируются нейромедиаторы, которые поступают на рецепторы постсинаптической мембраны другой клетки из специальных пузырьков – везикул. После их воздействия в соседний нейрон могут массированно поступать ионы определенного вида. Это происходит через калийные и натриевые каналы. В обычном состоянии они закрыты, внутри клетки находятся отрицательно заряженные ионы, а снаружи – положительно. Следовательно, на оболочке образуется разница напряжений. Это потенциал покоя. После попадания положительно заряженных ионов внутрь возникает потенциал действия – нервный импульс.

Баланс клетки восстанавливается с помощью специализированных белков – калиево-натриевых насосов.

Свойства химических синапсов:

  • возбуждение осуществляется только в одном направлении;
  • наличие задержки от 0,5 до 2 мс при передаче сигнала, связанной с длительностью процессов выделения медиатора, его передачи, взаимодействия с рецептором и образования потенциала действия;
  • может возникать утомление, вызванное истощением запаса медиатора или появлением стойкой деполяризации мембраны;
  • высокая чувствительность к ядам, лекарственным препаратам и другим биологически активным веществам.

В настоящее время известно более 100 нейромедиаторов. Примеры этих веществ – дофамин, норадреналин, ацетилхолин.

Для электрической передачи характерна узкая синаптическая щель и пониженное сопротивление между мембранами. В таком случае потенциал, созданный на пресинаптической мембране, вызывает распространение возбуждения на постсинаптической мембране.

Свойства электрических синапсов:

  • скорость передачи информации выше, чем в химических синапсах;
  • возможна как односторонняя, так и двусторонняя передача сигнала (в обратную сторону).

Также существуют смешанные синапсы, в них возбуждение может передаваться как с помощью нейромедиаторов, так и с помощью электрических импульсов.

Память включает в себя хранение и воспроизведение полученной информации. В результате обучения остаются так называемые следы памяти, а их наборы образуют энграммы – «записи». Нейронный механизм заключается в следующем: по цепи много раз проходят определенные импульсы, формируются структурные и биохимические изменения в синапсах. Этот процесс называется консолидацией. Многократное использование одних и тех же контактов создает специфические белки – это и есть следы памяти.

Особенности развития мозговой ткани

Структуры мозга продолжают формироваться до 3 лет. Масса мозга удваивается к концу первого года жизни ребенка.

Зрелость нервной ткани определяется степенью развития двух процессов:

  • миелинизация – образование изолирующих оболочек;
  • синаптогенез – формирование синаптических связей.

Миелинизация начинается на 4 месяце внутриутробной жизни с эволюционно более «старых» структур мозга, отвечающих за сенсорные и моторные функции. В системах, контролирующих скелетную мускулатуру, — незадолго до появления на свет младенца, и активно продолжается в течение первого года жизни. А в областях, связанных с высшими психическими функциями, такими как обучение, речь, мышление, миелинизация начинается лишь после рождения.

Именно поэтому в этот период особенно опасны инфекции и вирусы, оказывающие вредное воздействие на мозг. Это можно сравнить с автомобильной аварией: столкновение на маленькой скорости принесет меньший урон, чем на большой. Так и здесь – вмешательство в активный процесс созревания может нанести огромный вред и привести к печальным последствиям – ДЦП, олигофрении или задержке психического развития.

Стабилизация психофизиологических характеристик индивида происходит в 20 – 25 лет.

Процесс развития отдельной нервной клетки начинается с образования, имеющего специфическую электрическую активность. Его отростки, вытягиваясь, проникают в окружающие ткани и устанавливают синаптические контакты. Таким образом происходит иннервация (управление) всеми органами и системами организма. Данный процесс контролируется более чем половиной генов человека.

Клетки объединяются в особые связанные структуры – нейросети, которые выполняют конкретные функции.

Одно из научных предположений гласит, что иерархия структуры нейронов в головном мозге напоминает устройство Вселенной.

Развитие нейронов, их специализация, продолжается в течение всей жизни человека. У взрослого и младенца число нейронов приблизительно совпадает, но длина отростков и их количество отличается во много раз. Это связано с обучением и формированием новых связей.

Продолжительность существования нервных клеток и их хозяина чаще всего совпадает.

Виды нервных клеток

Каждый элемент в нейронной системе мозга выполняет определенную функцию. Рассмотрим, за что отвечают определенные виды нейронов.

Рецепторы

Большая часть рецепторных нейронов располагается в , их функция – передавать сигнал от рецепторов органов чувств в центральную нервную систему.

Командные нейроны

Здесь сходятся пути от клеток-детекторов, кратковременной и долговременной памяти и осуществляется принятие решения в ответ на входящий сигнал. Далее поступает команда в премоторные зоны, и формируется реакция.

Эффекторы

Они транслируют сигнал к органам и тканям. Эти нейроны имеют длинные аксоны. Мотонейроны – это эффекторные клетки, аксоны которых образуют нервные волокна, ведущие к мышцам. Эффекторные нейроны, регулирующие деятельность вегетативной нервной системы (к ней относятся обмен веществ, управление внутренними органами, дыхание, сердцебиение – все, что происходит без сознательного контроля), находятся за пределами головного мозга.

Промежуточные

Еще их называют контактными или вставочными – эти клетки являются связующим звеном между рецепторами и эффекторами.

Зеркальные нейроны

Данные нейроны обнаружены в различных участках центральной нервной системы. Считается, что эволюционно они появились для того, чтобы детеныши лучше и быстрее устраивались в окружающем мире.

Клетки были обнаружены в результате опыта с обезьянами. Животное доставало еду из кормушки специальными инструментами. Когда ученый делал то же самое, было выявлено, что у подопытной особи активируются определенные участки коры, как будто бы это делала она сама.

На работе зеркальных нейронов базируются эмпатия, социальные навыки, обучение, повторение, имитация. Способность прогнозировать тоже относится к этим клеткам.

Ученые установили: отчетливо представлять и делать – почти одно и то же. Такой метод психотерапии как визуализация построен на этом постулате.

Зеркальный нейроны – основа передачи культурного пласта от поколения к поколению и его наращивания. Например, обучаясь живописи, сначала мы повторяем уже существующие способы, то есть имитируем. А потом, на основе этого опыта, создаются оригинальные работы.

Нейроны новизны и тождества

Нейроны новизны впервые были обнаружены при исследовании лягушек, впоследствии были найдены и у человека. Эти клетки перестают отвечать на повторяющийся стимул. Изменение же сигнала, наоборот, провоцирует их активацию.

Клетки тождества определяют повторяющийся сигнал, что позволяет выдать ранее использовавшуюся реакцию, иногда даже опережая стимул – экстраполярный ответ.

Их совместное действие подчеркивает новизну, ослабляет влияние привычных стимулов и оптимизирует время формирования ответного поведения.

Заболевания, связанные с дефектами нервной ткани

В основе многих расстройств здоровья человека могут лежать различные нарушения нейронных связей головного мозга.

Аутизм

Ученые полагают, что аутизм связан с неразвитостью или дисфункцией зеркальных нейронов. Малыш, смотря на взрослого, не может понять поведение и эмоции другого человека и спрогнозировать его действия. Зарождается страх. Защитная реакция – замыкание в себе.

Болезнь Паркинсона

Причина нарушения двигательных функции при данном недуге – повреждение и гибель нейронов, продуцирующих дофамин.

Болезнь Альцгеймера

Одной из возможных причин является снижение производства нейромедиатора ацетилхолина. Второй вариант – накопление в нервной ткани амилоидных бляшек – патологического белкового налета.

Шизофрения

Одна из теорий гласит, что между клетками мозга шизофреника имеется нарушение контактов. Исследования показали, что у таких людей неправильно работают гены, отвечающие за выделение нейромедиаторов в синапсах. Еще одна версия – излишняя выработка дофамина. Третья теория происхождения заболевания – снижение скорости прохождения нервных импульсов вследствие повреждения миелиновых оболочек.

Нейродегеративные заболевания (связанные с гибелью нейронов) дают о себе знать тогда, когда большая часть клеток погибла, поэтому лечение начинается на поздних стадиях. Человек выглядит здоровым, признаков болезни нет, а опасный процесс уже запущен. Это происходит от того, что человеческий мозг очень пластичен и имеет мощные компенсаторные механизмы. Пример: когда умирают нейроны-производители дофамина при , оставшиеся клетки продуцируют большее количество вещества. Также увеличивается чувствительность к нейромедиатору клеток, принимающих сигнал. Какое-то время эти процессы не дают проявляться симптомам болезни.

При недугах, вызванных аномалиями хромосом (синдром Дауна, синдром Вильямса), обнаруживаются патологические виды нервных клеток.

Как сохранить нервные клетки здоровыми

Сохранение нейронов в здоровом состоянии – залог счастливой жизни и возможности вести активный образ жизни в пожилом возрасте. Наши рекомендации помогут вам в этом.

  1. Интеллектуальная деятельность в течение жизни способствует сохранению работоспособности до старости. Необходимо давать нервным клеткам нагрузку, создавать новые нейронные связи и укреплять старые, тренировать мозг.
  2. Питаться нужно полезными продуктами, содержащими жиры, так как оболочка нейронов состоит, по сути, из жиров – липидов.
  3. Пить больше жидкости – мозг состоит на 75% из воды. По этой же причине не следует злоупотреблять алкоголем, так как он обезвоживает организм.
  4. Чтобы помочь нейронам головного мозга проснуться с утра, хорошо дать им небольшую разминку, например, разгадать кроссворд, вспомнить несколько слов иностранного языка, решить математическую задачу.
  5. Дышать свежим воздухом – 20% от вдыхаемого кислорода потребляет головной мозг.
  6. Физические упражнения улучшают кровообращение во всем организме, а кровь снабжает мозг кислородом.
  7. Сон не менее 7-9 часов в сутки. Когда мы спим, полученная за день информация систематизируется: всем известно, что Менделеев увидел периодическую систему химических элементов во сне. Если человек отдыхает недостаточно, ресурсы мозга будут истощаться.

Заключение

Пластичность нейронов головного мозга позволяет не только выполнять генетически заданные программы, но и выстраивать новые. По образу и подобию человеческой нервной системы ведутся работы в области создания искусственного интеллекта. Существует множество научных споров об этичности, возможностях и опасностях данных разработок. В настоящее время исследователи рассматривают новые концепции образования нервных связей, применяя сложнейшие математические методы. Человеческий мозг до сих пор таит в себе множество загадок, которые еще предстоит раскрыть ученым.

В этой статье мы поговорим про нейроны мозга. Нейронами коры головного мозга является структурно-функциональная единица всей общей нервной системы.

Такая клетка обладает весьма сложным строением, высокой специализацией, а если говорить о ее структуре, то состоит клетка из ядра, тела и отростков. В организме человека в общей сложности существует приблизительно 100 миллиардов таких клеток.

Функции

Любые клетки, которые расположены в человеческом организме обязательно отвечают за те или иные его функции. Не исключением являются и нейроны.

Они, как и другие клетки головного мозга обязаны обеспечивать поддержание своей собственной структуры и некоторых функций, а также приспосабливаться к возможным изменениям условий, а соответственно осуществлять регулирующие процессы на клетки, которые находятся в непосредственной близости.

Главной функцией нейронов считается переработка важной информации, а именно ее получение, проведение, а потом и передача другим клеткам. Информация поступает благодаря синапсам, обладающих рецепторами сенсорных органов или какими-то иными нейронами.

Также в некоторых ситуациях передача информации может происходить и, непосредственно, из внешней среды при помощи, так называемых, специализированных дендритов. Проводится информация сквозь аксоны, а ее передача осуществляется синапсами.

Строение

Тело клетки . Эта часть нейрона считается самой главной и состоит из цитоплазмы и ядра, которые создают протоплазму, снаружи она ограничивается своеобразной мембраной, состоящей из двойного слоя липидов.

В свою очередь такой слой липидов, который еще принято называть биолипидным слоем, состоит из хвостов гидрофобной формы и таких же головок. Нужно отметить, что такие липиды находятся друг к другу хвостами, и таким образом создают некий своеобразный гидрофобный слой, который способен пропускать через себя исключительно вещества, растворяющиеся в жирах.

На поверхности мембраны расположены белки, которые имеют форму глобул. На таких мембранах расположены наросты полисахаридов, с помощью которых у клетки появляется хорошая возможность воспринимать раздражения внешних факторов. Также здесь присутствуют и интегральные белки, которые фактически насквозь пронизывают всю поверхность мембраны, а в них, в свою очередь, располагаются ионные каналы.

Нейроновые клетки коры головного мозга состоят из тел, диаметр колеблется в пределах от 5 до 100 мкм, которые содержат в себе ядро (имеющее множество ядерных пор), а также некие органеллы, в том числе и достаточно сильно развивающийся ЭПР шероховатой формы, обладающий активными рибосомами.

Также в состав каждой отдельной клетки нейрона входят и отростки. Существует два главных типа отростков – аксон и дендриты. Особенностью нейрона является и то, что он имеет развитый цитоскелет, который собственно способен проникать в его отростки.

Благодаря цитоскелету постоянно поддерживается необходимая и стандартная форма клетки, а его нити выполняют роль своеобразных «рельсов», с помощью которых транспортируются органеллы и вещества, которые упакованы в пузырьки мембран.

Дендриты и аксон . Аксон имеет вид достаточно длинного отростка, который отлично приспособлен к процессам, направленных на возбуждение нейрона от человеческого тела.

Дендриты выглядят совсем по-другому, уже хотя бы потому, что их длина гораздо меньшая, а также у них наблюдаются слишком развитые отростки, которые исполняют роль главного участка, где начинают появляться тормозные синапсы, способные таким образом влиять на нейрон, что в течение короткого периода времени нейроны человека возбуждаются.

Как правило, нейрон состоит из большего количество дендритов, в то время. Как присутствует всего один аксон. Один нейрон обладает связями с множеством других нейронов, иногда подобных связей существует около 20 000.

Делятся дендриты дихотомическим способом, в свою очередь аксоны способны давать коллатерали. В узлах ветвления практически в каждом нейроне находятся несколько митохондрий.

Стоит отметить также и тот факт, что у дендритов нет никакой миелиновой оболочки в то время, как аксоны могут таким органом располагать.

Синапсом называют место, где осуществляется контакт между двумя нейронами или же между эффекторной клеткой, которая получает сигнал и непосредственно нейроном.

Главной функцией такого составляющего нейрона является передача нервных импульсов между разными клетками, при этом частота сигнала может меняться в зависимости от темпов и типов передачи данного сигнала.

Нужно отметить, что некоторые синапсы способны вызывать деполяризацию нейрона, в тот момент как другие наоборот гиперполяризацию. Первый тип нейронов называют возбуждающими, а второй – тормозящими.

Как правило, для того, чтобы начался процесс возбуждения нейрона, в качестве раздражителей должны выступить сразу несколько возбуждающих синапсов.

Классификация

Согласно количеству и локализации дендритов, а также месторасположению аксона, нейроны головного мозга делятся на униполярные, биполярные, безаксонные, мультиполярные и псевдоуниполярные нейроны. Теперь хотелось бы рассмотреть каждый из таких нейронов более детально.

Униполярные нейроны обладают одним небольшим отростком, и чаще всего находятся в сенсорном ядре так называемого тройничного нерва, расположенного в средней части мозга.

Безаксонные нейроны имеют маленькие размеры и локализованы в непосредственной близости от спинного мозга, а именно в межпозвоночных галлиях и не имеют совершенно никаких делений отростков на аксоны и дендриты; все отростки имеют практически одинаковый вид и каких-то серьезных отличий между ними не существует.

Биполярные нейроны состоят из одного дендрита, который находятся в специальных сенсорных органах, в частности в сетке глаза и луковице, а также только одного аксона;

Мультиполярные нейроны имеют в собственной структуре несколько дендритов и один аксон, и находятся в центральной нервной системе;

Псевдоуниполярные нейроны считаются своеобразными в своем роде, так как сначала отходит от главного тела всего один отросток, который постоянно делится на несколько других, а встречаются подобные отростки исключительно в спинальных ганглиях.

Существует также классификация нейронов согласно функциональному принципу. Так, по таким данным различают эфферентные нейроны, афферентные, двигательные, а также интернейроны.

Эфферентные нейроны имеют в своем составе неультиматные и ультиматные подвиды. Кроме того, к ним относятся и первичные клетки чувствительных органов человека.

Афферентные нейроны . К нейронам данной категории относятся как первичные клетки чувствительных человеческих органов, так и псевдоуниполярные клетки, которые обладают дендритами со свободными окончаниями.

Ассоциативные нейроны . Главной функцией этой группы нейронов является осуществление связи между афферентными эфферентными видами нейронов. Такие нейроны делят на проекционные и комиссуральные.

Развитие и рост

Нейроны начинают развиваться из небольшой клетки, которая считается его предшественницей и перестает делиться еще до того момента, как образуются первые собственные отростки.

Нужно отметить, что в нынешнее время ученые еще не до конца изучили вопрос, касающейся развития и роста нейронов, но постоянно работают в данном направлении.

В большинстве случаев сначала начинают развиваться аксоны, а после этого дендриты. На самом конце отростка, который начинает уверенно развиваться образовывается утолщение специфической и несвойственной для такой клетки формы, и таким образом прокладывается путь сквозь ткань, окружающую нейроны.

Такое утолщение принято называть конусом роста нервных клеток. Данный конус состоит из некоторой уплощенной части отростка нервной клетки, которая в свою очередь создана из большого количества довольно тонких шипов.

Микрошипики обладают толщиной от 0,1 до 0,2 микромикрон, а в длину могут достигать отметки и 50 мкм. Если говорить непосредственно о плоской и широкой области конуса, то надо отметить, что ей свойственно менять собственные параметры.

Между микрошипами конуса присутствуют некоторые промежутки, которые полностью покрыты складчатой мембраной. Микрошипики двигаются на постоянной основе, благодаря чему, в случае поражения, нейроны восстанавливаются и приобретают необходимую форму.

Хотелось бы отметить, что каждая отдельная клетка движется по-своему, так если одна из них будет удлиняться или расширяться, то вторая может отклоняться в разные стороны или даже прилипать к субстрату.

Конус роста полностью заполнен мембранными пузырьками, которые характеризируются слишком мелкими размерами и неправильной формой, а также соединениями друг с другом.

Кроме того, в конусе роста находятся нейрофиламенты, митохондрии, а также микротрубочки. Такие элементы имеют способность двигаться с огромной скоростью.

Если сравнивать скорости передвижения элементов конуса и непосредственно самого конуса, то необходимо подчеркнуть, что они приблизительно одинаковы, а поэтому можно сделать вывод, что в период роста не наблюдается ни сборки, ни каких-то нарушений микротрубочек.

Наверное, новый мембранный материал начинает добавляться уже в самом конце процесса. Конус роста – это участок довольно быстрого эндоцитоза и экзоцитоза, что подтверждают большое количество пузырьков, которые здесь расположены.

Как правило, росту дендритов и аксонов предшествует момент миграции нейронных клеток, то есть тогда, когда незрелые нейроны фактически расселяются и начинают существовать на одном и том же постоянном месте.


Нервная система представляется наиболее сложной частью человеческого организма. В ее состав включаются около 85 миллиардов нервных и глиальных клеток. На сегодняшний день ученым удалось исследовать всего лишь 5 % нейронов. Другие 95% до сих пор остаются загадкой, поэтому проводятся многочисленные исследования данных компонентов мозга человека.

Рассмотрим, как устроен мозг человека, а именно его клеточную структуру.

Строение нейрона составляют 3 основные составляющие части:

1. Клеточное тело

Данная часть нервной клетки является ключевой, в состав которой входит цитоплазма и ядра, в совокупности создающие протоплазму, на поверхности которого образуется мембранная граница, состоящая из двух слое липидов. На мембранной поверхности находятся белки, представляющие форму глобул.

Нервные клетки коры состоят из тел, содержащих в себе ядро, а также ряд органелл, включая интенсивно и эффективно развивающуюся площадь рассеивания шероховатой формы, которая обладает активными рибосомами.

2. Дендриты и аксон

Аксон представляется продолжительным отростком, который эффективно приспосабливается к возбуждающим процессам от тела человека.

Дендриты имеют совсем иную анатомическую структуру. Их главное отличие от аксона то, что они имеют значительно меньшую длину, а также характеризуются наличием аномально развитых отростков, которые выполняют функции основного участка. В этом участке начинают возникать тормозящие синапсы, благодаря чему существует способность непосредственно влиять на сам нейрон.

Значительная часть нейронов в больше степени состоит из дендритов, при этом имеется всего один аксон. Одна нервная клетка имеет множество связей с другими клетками. В некоторых случаях количество данных связей превышает 25000.

Синапс – это место, где формируется контактный процесс между двумя клетками. Основной функцией является передача импульсов между различными клетками, при этом частота сигнала может изменяться в зависимости от скорости и типов передачи этого сигнала.

Как правило, чтобы начался возбуждающий процесс нервной клетки, в роли раздражителей могут выступить несколько возбуждающих синапсов.

Что собой представляет тройной мозг человека

Еще в 1962 году ученый-нейробиолог Пол Маклин выделил три мозга человека, а именно:

  1. Рептильный

Этот рептильный тип мозга человека существует более чем 100 млн. лет. Он оказывает значительное влияние на поведенческие качества человека. Его главной функцией является управление базовым поведением, которое включает в себя такие функции как:

  • Размножение на основе человеческих инстинктов
  • Агрессия
  • Желание все контролировать
  • Следовать определенным шаблонам
  • Имитировать, обманывать
  • Бороться за влияние над другими

Также рептильный головной мозг человека характеризуется такими особенностями как хладнокровие по отношению к другим, отсутствием сопереживания, полное безразличие к последствиям своих действий, в отношении к другим. Также данный тип не способен распознавать воображаемую угрозу с реальной опасностью. Вследствие этого, в некоторых ситуациях, данный мозг полностью подчиняет разум и тело человека.

  1. Эмоциональный (лимбическая система)

Представляется мозгом млекопитающего, возраст которого составляет около 50 млн. лет.

Отвечает за такие функциональные особенности особи как:

  • Выживание, самосохранение и самозащита
  • Управляет социальным поведением, включая материнскую заботу и воспитание
  • Учавствует в регулировании функций органов, обоняния, инстинктивного поведения, памяти, состояния сна и бодрствования и ряда других

Данный мозг практически полностью идентичен мозгу животных.

  1. Визуальный

Является мозгом, выполняющим функции нашего мышления. Другими словами это рациональный разум. Является наиболее молодой структурой, возраст которой не превышает 3 млн. лет.

Представляется тем, что мы именуем рассудком, который включает в себя такие способности как;

  • Размышлять
  • Проводить умозаключения
  • Способность анализировать

Выделяется наличием пространственного мышления, где возникают свойственные визуальные изображения.

Классификация нейронов

На сегодняшний день выделяется ряд классификация нейронных клеток. Одна из распространенных классификаций нейронов выделяется по числу отростков и месту их локализации, а именно:

  1. Мультиполярные. Данные клетки характеризуются большим скоплением в ЦНС. Представляются с одним аксоном и несколькими дендритами.
  2. Биполярные. Характеризуются одним аксоном и одним дендритом и располагаются в сетчатке глаза, обонятельной ткани, а также в слуховом и вестибулярном центре.

Также в зависимости выполняемых функций, нейроны подразделяются на 3 большие группы:

1. Афферентные

Отвечают за процесс передачи сигналов от рецепторов в отдел ЦНС. Различаются как:

  • Первичные. Первичные располагаются в спинальных ядрах, которые связываются с рецепторами.
  • Вторичные. Находятся в зрительных буграх и выполняют функции передачи сигналов в вышележащие отделы. Данный тип клеток не вступает в связь с рецепторами, а принимают сигналы от клеток-нейроцитов.

2. Эфферентные или двигательные

Этот тип формирует передачу импульса к остальным центрам и органам человеческого организма. Например, нейроны двигательной зоны больших полушарий – пирамидные, которые передают сигнал моторным нейронам спинномозгового отдела. Ключевая особенность моторных эфферентных нейронов – это наличие аксон значительной протяженности, обладающий высокой скоростью передачи сигнала возбуждения.

Эфферентные нервные клетки разных отделов мозговой коры связывают между собой эти отделы. Эти нейронные связи головного мозга обеспечивают отношения внутри полушарий и между ними, следовательно, которые отвечают за функционирование мозга в процессе обучения, распознавания объектов, утомляемости и т. п.

3. Вставочные или ассоциативные

Данный тип осуществляет взаимодействие между нейронами, а также обрабатывает данные, которые были переданы от чувствительных клеток и затем передают ее другим вставочным или моторным нервным клеткам. Эти клетки представляются меньшим размером, в сравнении с афферентными и эфферентными клетками. Аксоны представлены небольшой протяженностью, однако сеть дендритов довольно обширна.

Специалисты сделали вывод, что непосредственными нервными клетками, которые локализованы в головном мозге, являются ассоциативные нейроны мозга, а остальные регулируют деятельность мозга вне его самого.

Восстанавливаются ли нервные клетки

Современная наука уделяет достаточно внимания процессам гибели и восстановления нервных клеток. Весь организм человека имеет возможность восстанавливаться, но имеют ли такую возможность нервные клетки мозга?

Еще в процессе зачатия организм настраивается на отмирание нервных клеток.

Ряд ученых утверждает, что количество отираемых клеток составляет около 1% в год. Исходя из этого утверждения, получается, что головной мозг уже износился бы вплоть до потери способностей выполнять элементарные вещи. Однако такого процесса не происходит, и мозг продолжает функционировать до самой своей смерти.

Каждая ткань организма самостоятельно восстанавливает себя путем деления «живых» клеток. Однако после ряда исследований нервной клетки люди установили, что клетка не делится. Утверждается, что новые клетки головного мозга образуются вследствие нейрогенеза, который запускается еще во внутриутробном периоде и продолжается на протяжении всей жизни.

Нейрогенез – это синтез новые нейронов с предшественников – стволовых клеток, которые впоследствии дифференцируются и формируются в зрелые нейроны.

Такой процесс был впервые описан в 1960 году, однако в то время данный процесс ничем подкреплялся.

Дальнейшие исследования подтвердили, что нейрогенез может происходить в определенных мозговых областях. Одной из таких областей выступает пространство вокруг мозговых желудочков. Ко второму участку можно отнести гиппокамп, который располагается непосредственно возле желудочков. Гиппокамп, выполняет функции нашей памяти, мышления и эмоций.

Вследствие этого способности к запоминанию и размышлению формируются в процессе жизнедеятельность под влиянием различных факторов. Как можно отметить из вышесказанного, наш головного мозг, определение структур которого, хоть и было выполнено всего на 5%, все же выделяется ряд фактов, которые подтверждают способность нервных клеток восстанавливаться.

Заключение

Не стоит забывать, что для полноценного функционирования нервных клеток следует знать, как улучшить нейронные связи головного мозга. Многие специалисты отмечают, что главный залог здоровых нейронов – это здоровое питание и образ жизни и только затем может использоваться дополнительная фармакологическая поддержка.

Организуйте свой сон, откажитесь от алкоголя, курения и в конечном итоге ваши нервные клетки скажут вам спасибо.

Энциклопедичный YouTube

    1 / 5

    ✪ Межнейронные химические синапсы

    ✪ Нейроны

    ✪ Тайна мозга. Вторая часть. Реальность во власти нейронов.

    ✪ Как Спорт Стимулирует Рост Нейронов в Мозге?

    ✪ Строение нейрона

    Субтитры

    Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

Строение нейронов

Тело клетки

Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), ограниченной снаружи мембраной из липидного бислоя . Липиды состоят из гидрофильных головок и гидрофобных хвостов. Липиды располагаются гидрофобными хвостами друг к другу, образуя гидрофобный слой. Этот слой пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: в форме глобул на поверхности, на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 130 мкм. Тело содержит ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами , аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, который проникает в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в нейроглии .(Нейроглия , или просто глия (от др.-греч. νεῦρον - волокно, нерв + γλία - клей), - совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Количество глиальных клеток в среднем в 10-50 раз больше, чем нейронов.)

В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Нейроны различаются по форме, числу отростков и функциям. В зависимости от функции выделяют чувствительные, эффекторные (двигательные, секреторные) и вставочные. Чувствительные нейроны воспринимают раздражения, преобразуют их в нервные импульсы и передают в мозг. Эффекторные (от лат. effectus - действие) - вырабатывают и посылают команды к рабочим органам. Вставочные - осуществляют связь между чувствительными и двигательными нейронами, участвуют в обработке информации и выработке команд.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Механизм создания и проведения потенциала действия

В 1937 году Джон Захари Младший определил что гигантский аксон кальмара может быть использован для изучения электрических свойств аксонов. Аксоны кальмара были выбраны из-за того что они намного крупнее человеческих. Если вставить внутрь аксона электрод то можно замерить его мембранный потенциал .

Мембрана аксона содержит в себе потенциал-зависимые ионные каналы . Они позволяют аксону генерировать и проводить по своему телу электрические сигналы называемые потенциалами действия. Эти сигналы образуются и распространяются благодаря электрически заряженным ионам натрия (Na +), калия (K +), хлора (Cl -), кальция (Ca 2+).

Давление,растяжение,химические факторы или изменение мембранного потенциала могут активировать нейрон. Происходит это вследствие открытия ионных каналов которые позволяют ионам пересекать мембрану клетки и соответственно изменять мембранный потенциал.

Тонкие аксоны расходуют меньше энергии и метаболических веществ для проведения потенциала действия, но толстые аксоны позволяют проводить его быстрее.

Для того чтобы проводить потенциалы действия более быстро и менее энергозатратно нейроны могут использовать для покрытия аксонов специальные глиальные клетки называемые олигодендроцитами в ЦНС или шванновскими клетками в переферической нервной системе. Эти клетки покрывают аксоны не полностью, оставляя промежутки на аксонах открытые внеклеточному веществу. В этих промежутках повышенная плотность ионных каналов.Они называются перехватами Ранвье . Через них и проходит потенциал действия посредством электрического поля между промежутками.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях , не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге . Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны - нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи , аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов :

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Вопрос о делении нейронов в настоящее время остаётся дискуссионным. По одной из версий нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. Первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение, которое прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии , микротрубочки и нейрофиламенты, аналогичные имеющимся в теле нейрона.

Микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза , о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Свойства и функции нейронов

Свойства:

  • Наличие трансмембранной разницы потенциалов (до 90 мВ), наружная поверхность электроположительна по отношению к внутренней поверхности.
  • Очень высокая чувствительность к некоторым химическим веществам и электрическому току.
  • Способность к нейросекреции , то есть к синтезу и выделению особых веществ (нейромедиаторов), в окружающую среду или синаптическую щель.
  • Высокое энергопотребление , высокий уровень энергетических процессов, что обуславливает необходимость постоянного притока основных источников энергии - глюкозы и кислорода , необходимых для окисления.

Функции:

  • Приёмная функция (синапсы - точки контакта, от рецепторов и нейронов получаем информацию в виде импульса).
  • Интегративная функция (обработка информации, в результате на выходе нейрона формируется сигнал, несущий информацию всех суммированных сигналов).
  • Проводниковая функция (от нейрона по аксону идет информация в виде электрического тока к синапсу).
  • Передающая функция (нервный импульс, достигнув окончание аксона , который уже входит в структуру синапса, обуславливает выделение медиатора - непосредственного передатчика возбуждения к другому нейрону или исполнительному органу).

См. также

Примечания

  1. Williams R. W. , Herrup K. The control of neuron number. (англ.) // Annual review of neuroscience. - 1988. - Vol. 11. - P. 423-453. - DOI :10.1146/annurev.ne.11.030188.002231 . - PMID 3284447 . [исправить ]
  2. Azevedo F. A. , Carvalho L. R. , Grinberg L. T. , Farfel J. M. , Ferretti R. E. , Leite R. E. , Jacob Filho W. , Lent R. , Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. (англ.) // The Journal of comparative neurology. - 2009. - Vol. 513, no. 5 . - P. 532-541. - DOI :10.1002/cne.21974 . - PMID 19226510 . [исправить ]
  3. Camillo Golgi (1873). “Sulla struttura della sostanza grigia del cervelo” . Gazzetta Medica Italiana. Lombardia . 33 : 244–246.

С моим видением того как работает мозг и каковы возможные пути создания искусственного интеллекта. За прошедшее с тех пор время удалось существенно продвинуться вперед. Что-то получилось глубже понять, что-то удалось смоделировать на компьютере. Что приятно, появились единомышленники, активно участвующие в работе над проектом.

В настоящем цикле статей планируется рассказать о той концепции интеллекта над которой мы сейчас работаем и продемонстрировать некоторые решения, являющиеся принципиально новыми в сфере моделирования работы мозга. Но чтобы повествование было понятным и последовательным оно будет содержать не только описание новых идей, но и рассказ о работе мозга вообще. Какие-то вещи, особенно в начале, возможно покажутся простыми и общеизвестными, но я бы советовал не пропускать их, так как они во многом определяют общую доказательность повествования.

Общее представление о мозге

Нервные клетки, они же нейроны, вместе со своими волокнами, передающими сигналы, образуют нервную систему. У позвоночных основная часть нейронов сосредоточена в полости черепа и позвоночном канале. Это называется центральной нервной системой. Соответственно, выделяют головной и спинной мозг как ее составляющие.

Спинной мозг собирает сигналы от большинства рецепторов тела и передает их в головной мозг. Через структуры таламуса они распределяются и проецируются на кору больших полушарий головного мозга.

Кроме больших полушарий обработкой информации занимается еще и мозжечок, который, по сути, является маленьким самостоятельным мозгом. Мозжечок обеспечивает точную моторику и координацию всех движений.

Зрение, слух и обоняние обеспечивают мозг потоком информации о внешнем мире. Каждая из составляющих этого потока, пройдя по своему тракту, также проецируется на кору. Кора – это слой серого вещества толщиной от 1.3 до 4.5 мм, составляющий наружную поверхность мозга. За счет извилин, образованных складками, кора упакована так, что занимает в три раза меньшую площадь, чем в расправленном виде. Общая площадь коры одного полушария – приблизительно 7000 кв.см.

В итоге все сигналы проецируются на кору. Проекция осуществляется пучками нервных волокон, которые распределяются по ограниченным областям коры. Участок, на который проецируется либо внешняя информация, либо информация с других участков мозга образует зону коры. В зависимости от того, какие сигналы на такую зону поступают, она имеет свою специализацию. Различают моторную зону коры, сенсорную зону, зоны Брока, Вернике, зрительные зоны, затылочную долю, всего около сотни различных зон.




В вертикальном направлении кору принято делить на шесть слоев. Эти слои не имеют четких границ и определяются по преобладанию того или иного типа клеток. В различных зонах коры эти слои могут быть выражены по-разному, сильнее или слабее. Но, в общем и целом, можно говорить о том, что кора достаточно универсальна, и предполагать, что функционирование разных ее зон подчиняется одним и тем же принципам.


Слои коры

По афферентным волокнам сигналы поступают в кору. Они попадают на III, IV уровень коры, где распределяются по близлежащим к тому месту, куда попало афферентное волокно, нейронам. Большая часть нейронов имеет аксонные связи в пределах своего участка коры. Но некоторые нейроны имеют аксоны, выходящие за ее пределы. По этим эфферентным волокнам сигналы идут либо за пределы мозга, например, к исполнительным органам, или проецируются на другие участки коры своего или другого полушария. В зависимости от направления передачи сигналов эфферентные волокна принято делить на:

  • ассоциативные волокна, которые связывают отдельные участки коры одного полушария;
  • комиссуральные волокна, которые соединяют кору двух полушарий;
  • проекционные волокна, которые соединяют кору с ядрами низших отделов центральной нервной системы.
Если взять направление, перпендикулярное поверхности коры, то замечено, что нейроны, располагающиеся вдоль этого направления, реагируют на схожие стимулы. Такие вертикально расположенные группы нейронов, принято называть кортикальными колонками.

Можно представить себе кору головного мозга как большое полотно, раскроенное на отдельные зоны. Картина активности нейронов каждой из зон кодирует определенную информацию. Пучки нервных волокон, образованные аксонами, выходящими за пределы своей зоны коры, формируют систему проекционных связей. На каждую из зон проецируется определенная информация. Причем на одну зону может поступать одновременно несколько информационных потоков, которые могут приходить как с зон своего, так и противоположного полушария. Каждый поток информации похож на своеобразную картинку, нарисованную активностью аксонов нервного пучка. Функционирование отдельной зоны коры – это получение множества проекций, запоминание информации, ее переработка, формирование собственной картины активности и дальнейшая проекция информации, получившейся в результате работы этой зоны.

Существенный объем мозга – это белое вещество. Оно образовано аксонами нейронов, создающими те самые проекционные пути. На рисунке ниже белое вещество можно увидеть как светлое заполнение между корой и внутренними структурам мозга.


Распределение белого вещества на фронтальном срезе мозга

Используя диффузную спектральную МРТ, удалось отследить направление отдельных волокон и построить трехмерную модель связанности зон коры (проект Connectomics (Коннектом)).

Представление о структуре связей хорошо дают рисунки ниже (Van J. Wedeen, Douglas L. Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric Hagmann, Jon H. Kaas, Wen-Yih I. Tseng, 2012).


Вид со стороны левого полушария


Вид сзади


Вид справа

Кстати, на виде сзади отчетливо видна асимметрия проекционных путей левого и правого полушария. Эта асимметрия во многом и определяет различия в тех функциях, которые приобретают полушария по мере их обучения.

Нейрон

Основа мозга – нейрон. Естественно, что моделирование мозга с помощью нейронных сетей начинается с ответа на вопрос, каков принцип его работы.

В основе работы реального нейрона лежат химические процессы. В состоянии покоя между внутренней и внешней средой нейрона существует разность потенциалов – мембранный потенциал, составляющий около 75 милливольт. Он образуется за счет работы особых белковых молекул, работающих как натрий-калиевые насосы. Эти насосы за счет энергии нуклеотида АТФ гонят ионы калия внутрь, а ионы натрия - наружу клетки. Поскольку белок при этом действует как АТФ-аза, то есть фермент, гидролизующий АТФ, то он так и называется - «натрий-калиевая АТФ-аза». В результате нейрон превращается в заряженный конденсатор с отрицательным зарядом внутри и положительным снаружи.


Схема нейрона (Mariana Ruiz Villarreal)

Поверхность нейрона покрыта ветвящимися отростками – дендритами. К дендритам примыкают аксонные окончания других нейронов. Места их соединений называются синапсами. Посредством синаптического взаимодействия нейрон способен реагировать на поступающие сигналы и при определенных обстоятельствах генерировать собственный импульс, называемый спайком.

Передача сигнала в синапсах происходит за счет веществ, называемых нейромедиаторами. Когда нервный импульс по аксону поступает в синапс, он высвобождает из специальных пузырьков молекулы нейромедиатора, характерные для этого синапса. На мембране нейрона, получающего сигнал, есть белковые молекулы – рецепторы. Рецепторы взаимодействуют с нейромедиаторами.


Химический синапс

Рецепторы, расположенные в синаптической щели, являются ионотропными. Это название подчеркивает тот факт, что они же являются ионными каналами, способными перемещать ионы. Нейромедиаторы так воздействуют на рецепторы, что их ионные каналы открываются. Соответственно, мембрана либо деполяризуется, либо гиперполяризуется – в зависимости от того, какие каналы затронуты и, соответственно, какого типа этот синапс. В возбуждающих синапсах открываются каналы, пропускающие катионы внутрь клетки, - мембрана деполяризуется. В тормозных синапсах открываются каналы, проводящие анионы, что приводит к гиперполяризации мембраны.

В определенных обстоятельствах синапсы могут менять свою чувствительность, что называется синаптической пластичностью. Это приводит к тому, что синапсы одного нейрона приобретают различную между собой восприимчивость к внешним сигналам.

Одновременно на синапсы нейрона поступает множество сигналов. Тормозящие синапсы тянут потенциал мембраны в сторону накопления заряда внутри клети. Активирующие синапсы, наоборот, стараются разрядить нейрон (рисунок ниже).


Возбуждение (A) и торможение (B) ганглиозной клетки сетчатки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

Когда суммарная активность превышает порог инициации, возникает разряд, называемый потенциалом действия или спайком. Спайк – это резкая деполяризация мембраны нейрона, которая и порождает электрический импульс. Весь процесс генерации импульса длится порядка 1 миллисекунды. При этом ни продолжительность, ни амплитуда импульса не зависят от того, насколько были сильны вызвавшие его причины (рисунок ниже).


Регистрация потенциала действия ганглиозной клетки (Николлс Дж., Мартин Р., Валлас Б., Фукс П., 2003)

После спайка ионные насосы обеспечивают обратный захват нейромедиатора и расчистку синаптической щели. В течение рефрактерного периода, наступающего после спайка, нейрон не способен порождать новые импульсы. Продолжительность этого периода определяет максимальную частоту генерации, на которую способен нейрон.

Спайки, которые возникают как следствие активности на синапсах, называют вызванными. Частота следования вызванных спайков кодирует то, насколько хорошо поступающий сигнал соответствует настройке чувствительности синапсов нейрона. Когда поступающие сигналы приходятся именно на чувствительные синапсы, активирующие нейрон, и этому не мешают сигналы, приходящие на тормозные синапсы, то реакция нейрона максимальна. Образ, который описывается такими сигналами, называют характерным для нейрона стимулом.

Конечно, представление о работе нейронов не стоит излишне упрощать. Информация между некоторыми нейронами может передаваться не только спайками, но и за счет каналов, соединяющих их внутриклеточное содержимое и передающих электрический потенциал напрямую. Такое распространение называется градуальным, а само соединение называется электрическим синапсом. Дендриты в зависимости от расстояния до тела нейрона делятся на проксимальные (близкие) и дистальные (удаленные). Дистальные дендриты могут образовывать секции, работающие как полуавтономные элементы. Помимо синаптических путей возбуждения есть внесинаптические механизмы, вызывающие метаботропные спайки. Кроме вызванной активности существует еще и спонтанная активность. И наконец, нейроны мозга окружены глиальными клетками, которые также оказывают существенное влияние на протекающие процессы.

Долгий путь эволюции создал множество механизмов, которые используются мозгом в своей работе. Некоторые из них могут быть поняты сами по себе, смысл других становится ясен только при рассмотрении достаточно сложных взаимодействий. Поэтому не стоит воспринимать сделанное выше описание нейрона как исчерпывающее. Чтобы перейти к более глубоким моделям, нам необходимо сначала разобраться с «базовыми» свойствами нейронов.

В 1952 году Аланом Ллойдом Ходжкином и Эндрю Хаксли были сделаны описания электрических механизмов, которые определяют генерацию и передачу нервного сигнала в гигантском аксоне кальмара (Hodgkin, 1952). Что было оценено Нобелевской премией в области физиологии и медицины в 1963 году. Модель Ходжкина – Хаксли описывает поведение нейрона системой обыкновенных дифференциальных уравнений. Эти уравнения соответствуют автоволновому процессу в активной среде. Они учитывают множество компонент, каждая из которых имеет свой биофизический аналог в реальной клетке (рисунок ниже). Ионные насосы соответствуют источнику тока I p . Внутренний липидный слой клеточной мембраны образует конденсатор с емкостью C m . Ионные каналы синаптических рецепторов обеспечивают электрическую проводимость g n , которая зависит от подаваемых сигналов, меняющихся со временем t, и общей величины мембранного потенциала V. Ток утечки мембранных пор создает проводник g L . Движение ионов по ионным каналам происходит под действием электрохимических градиентов, которым соответствуют источники напряжения с электродвижущей силой E n и E L .


Основные компоненты модели Ходжкина - Хаксли

Естественно, что при создании нейронных сетей возникает желание упростить модель нейрона, оставив в ней только самые существенные свойства. Наиболее известная и популярная упрощенная модель – это искусственный нейрон Маккалока - Питтса, разработанный в начале 1940-х годов (Маккалох Дж., Питтс У., 1956).


Формальный нейрон Маккалока - Питтса

На входы такого нейрона подаются сигналы. Эти сигналы взвешенно суммируются. Далее к этой линейной комбинации применяется некая нелинейная функция активации, например, сигмоидальная. Часто как сигмоидальную используют логистическую функцию:


Логистическая функция

В этом случае активность формального нейрона записывается как

В итоге такой нейрон превращается в пороговый сумматор. При достаточно крутой пороговой функции сигнал выхода нейрона – либо 0, либо 1. Взвешенная сумма входного сигнала и весов нейрона – это свертка двух образов: образа входного сигнала и образа, описываемого весами нейрона. Результат свертки тем выше, чем точнее соответствие этих образов. То есть нейрон, по сути, определяет, насколько подаваемый сигнал похож на образ, записанный на его синапсах. Когда значение свертки превышает определенный уровень и пороговая функция переключается в единицу, это можно интерпретировать как решительное заявление нейрона о том, что он узнал предъявляемый образ.

Реальные нейроны действительно неким образом похожи на нейроны Маккалока - Питтса. Амплитуды их спайков не зависит от того, какие сигналы на синапсах их вызвали. Спайк, либо есть, либо его нет. Но реальные нейроны реагируют на стимул не единичным импульсом, а импульсной последовательностью. При этом частота импульсов тем выше, чем точнее узнан характерный для нейрона образ. Это означает, что если мы построим нейронную сеть из таких пороговых сумматоров, то она при статичном входном сигнале хотя и даст какой-то выходной результат, но этот результат будет далек от воспроизведения того, как работают реальные нейроны. Для того чтобы приблизить нейронную сеть к биологическому прототипу, нам понадобится моделировать работу в динамике, учитывая временные параметры и воспроизводя частотные свойства сигналов.

Но можно пойти и другим путем. Например, можно выделить обобщенную характеристику активности нейрона, которая соответствует частоте его импульсов, то есть количеству спайков за определенный промежуток времени. Если перейти к такому описанию, то можно представить нейрон как простой линейный сумматор.


Линейный сумматор

Сигналы выхода и, соответственно, входа для таких нейронов уже не являются дихатомичными (0 или 1), а выражаются некой скалярной величиной. Функция активации тогда записывается как

Линейный сумматор не стоит воспринимать как что-то принципиально иное по сравнению с импульсным нейроном, просто он позволяет при моделировании или описании перейти к более длинным временным интервалам. И хотя импульсное описание более корректно, переход к линейному сумматору во многих случаях оправдан сильным упрощением модели. Более того, некоторые важные свойства, которые трудно разглядеть в импульсном нейроне, вполне очевидны для линейного сумматора.