К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

Скорость распространения звука

Чем выше упругость среды, тем больше скорость: в каучуке50, в воздухе330, в воде1450, а в стали - 5000 метров в секунду. Если бы мы, находились в Москве, могли крикнуть так громко, чтобы звук долетел до Петербурга, то нас услышали бы там только через полчаса, а если бы звук на это же расстояние распространялся в стали, то он был бы принят через две минуты.

На скорость распространения звука оказывает влияние состояние одной и той же среды. Когда мы говорим, что в воде звук распространяется со скоростью 1450 метров в секунду, это вовсе не означает, что в любой воде и при любых условиях. С повышением температуры и солености воды, а так же с увеличением глубины, а следовательно, и гидростатического давления скорость звука возрастает. Или возьмем сталь. Здесь тоже скорость звука зависит как от температуры, так и от качественного состава стали: чем больше в ней углерода, тем она тверже, тем звук в ней распространяется быстрее.

Встречая на своем пути препятствие, звуковые волны отражаются от него по строго определенному правилу: угол отражения равен углу падения. Звуковые волны, идущие из воздуха, почти полностью отразятся от поверхности воды вверх, а звуковые волны, идущие от источника, находящегося в воде, отражаются от нее вниз.

Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального положения, т.е. преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды, в какую проникает звук. Если скорость звука во второй среде больше чем в первой, то угол преломления будет больше угла падения и наоборот.

В воздухе звуковые волны распространяются в виде расходящийся сферической волны, которая заполняет все больший объем, так как колебания частиц, вызванные источниками звука, передаются массе воздуха. Однако с увеличением расстояния колебания частиц ослабевают. Известно, что для увеличения дальности передачи, звук необходимо концентрировать в заданном направлении. Когда мы хотим, чтобы нас лучше было слышно, мы прикладываем ладони ко рту или пользуемся рупором. В этом случае звук будет ослабляться меньше, а звуковые волны - распространяются дальше.

При увеличении толщины стенки звуколокация на низких средних частотах увеличивается, но «коварный» резонанс совпадения, вызывающий удушение звуколокации, начинает проявляться, более низких частотах и захватывает более широкую их область.

Мы знаем, что звук распросраняется по воздуху. Именно потому мы и можем слышать. В вакууме никаких звуков существовать не может. Но если звук передается по воздуху, вследствие взаимодействия его частиц, не будет ли он передаваться и другими веществами? Будет.

Распространение и скорость звука в разных средах

Звук передается не только воздухом. Наверное, все знают, что если приложить ухо к стене, то можно услышать разговоры в соседней комнате. В данном случае звук передается стеною. Звуки распространяются и в воде, и в других средах. Более того, распространение звука в различных средах происходит по-разному. Скорость звука различается в зависимости от вещества.

Любопытно, что скорость распространения звука в воде почти в четыре раза выше, чем в воздухе. То есть, рыбы слышат «быстрее», чем мы. В металлах и стекле звук распространяется еще быстрее. Это происходит потому, что звук это колебания среды, и звуковые волны передаются быстрее в средах с лучшей проводимостью.

Плотность и проводимость воды больше, чем у воздуха, но меньше, чем у металла. Соответственно, и звук передается по-разному. При переходе из одной среды в другую скорость звука меняется.

Длина звуковой волны также меняется при ее переходе из одной среды в другую. Прежней остается лишь ее частота. Но именно поэтому мы и можем различить, кто конкретно говорит даже сквозь стены.

Так как звук это колебания , то все законы и формулы для колебаний и волн хорошо применимы к звуковым колебаниям . При расчете скорости звука в воздухе следует учитывать и то, что эта скорость зависит от температуры воздуха. При увеличении температуры скорость распространения звука возрастает. При нормальных условиях скорость звукав воздухе составляет 340 344 м/с.

Звуковые волны

Звуковые волны, как известно из физики, распространяются в упругих средах. Именно поэтому звуки хорошо передаются землей. Приложив ухо к земле, можно издалека услышать звук шагов, топот копыт и так далее.

В детстве все наверняка развлекались, прикладывая ухо к рельсам. Стук колес поезда передается по рельсам на несколько километров. Для создания обратного эффекта звукопоглощения, используют мягкие и пористые материалы.

Например, чтобы защитить от посторонних звуков какое-либо помещение, либо, наоборот, чтобы не допустить выхода звуков из комнаты наружу, помещение обрабатывают, звукоизолируют. Стены, пол и потолок обивают специальными материалами на основе вспененных полимеров. В такой обивке очень быстро затихают все звуки.

Звук распространяется посредством звуковых волн. Эти волны проходят не только сквозь газы и жидкости, но и через твердые тела. Действие любых волн заключается главным образом в переносе энергии. В случае звука перенос принимает форму мельчайших перемещений на молекулярном уровне.

В газах и жидкостях звуковая волна сдвигает молекулы в направлении своего движения, то есть в направлении длины волны. В твердых телах звуковые колебания молекул могут происходить и в направлении перпендикулярном волне.

Звуковые волны распространяются из своих источников во всех направлениях, как это показано на рисунке справа, на котором изображен металлический колокол, периодически сталкивающийся со своим языком. Эти механические столкновения заставляют колокол вибрировать. Энергия вибраций сообщается молекулам окружающего воздуха, и они оттесняются от колокола. В результате в прилегающем к колоколу слое воздуха увеличивается давление, которое затем волнообразно распространяется во все стороны от источника.

Скорость звука не зависит от громкости или тона. Все звуки от радиоприемника в комнате, будь они громкими или тихими, высокого тона или низкого, достигают слушателя одновременно.

Скорость звука зависит от вида среды, в которой он распространяется, и от ее температуры. В газах звуковые волны распространяются медленно, потому что их разреженная молекулярная структура слабо препятствует сжатию. В жидкостях скорость звука увеличивается, а в твердых телах становится еще более высокой, как это показано на диаграмме внизу в метрах в секунду (м/с).

Путь волны

Звуковые волны распространяются в воздухе аналогично показанному на диаграммах справа. Волновые фронты движутся от источника на определенном расстоянии друг от друга, определяемом частотой колебаний колокола. Частота звуковой волны определяется путем подсчета числа волновых фронтов, прошедших через данную точку в единицу времени.

Фронт звуковой волны удаляется от вибрирующего колокола.

В равномерно прогретом воздухе звук распространяется с постоянной скоростью.

Второй фронт следует за первым на расстоянии, равном длине волны.

Сила звука максимальна вблизи источника.

Графическое изображение невидимой волны

Звуковое зондирование глубин

Пучок лучей гидролокатора, состоящий из звуковых волн, легко проходит через океанскую воду. Принцип действия гидролокатора основан на том факте, что звуковые волны отражаются от океанского дна; этот прибор обычно используется для определения особенностей подводного рельефа.

Упругие твердые тела

Звук распространяется в деревянной пластине. Молекулы большинства твердых тел связаны в упругую пространственную решетку, которая плохо сжимается и вместе с тем ускоряет прохождение звуковых волн.

Интересные факты: где быстрее распространяется звук?

Во время грозы сначала видна вспышка молнии и лишь через некоторое время слышатся раскаты грома. Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии. Любопытно вспомнить, в какой среде звук распространяется быстрее всего, а где вообще не распространяется?

Опыты и теоретические расчеты скорости звука в воздухе предпринимались ещё с XVII века, но только через два столетия французский ученый Пьер-Симон де Лаплас вывел окончательную формулу для её определения. Скорость звука зависит от температуры: с увеличением температуры воздуха она растёт, а с уменьшением - падает. При 0° скорость звука составляет 331 м/с (1192 км/ч), при +20° она уже равна 343 м/с (1235 км/ч).

Скорость звука в жидкостях, как правило, больше скорости звука в воздухе. Опыты по определению скорости впервые провели на Женевском озере в 1826 году. Два физика сели в лодки и разъехались на 14 км. На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре +8° она оказалась равной примерно 1440 м/с. Люди, работающие в подводных сооружениях, подтверждают, что под водой отчетливо слышны береговые звуки, а рыбаки знают, что рыба уплывает при малейшем подозрительном шуме на берегу.

Скорость звука в твёрдых телах больше, чем в жидкостях и газах. К примеру, если приложить ухо к рельсу, то после удара по другому концу рельса человек услышит два звука. Один из них «придёт» до уха по рельсу, другой – по воздуху. Хорошей проводимостью звука обладает земля. Поэтому в стародавние времена при осаде в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землёй, могли определить, ведет ли враг подкоп к стенам или нет, мчится конница или нет. Кстати, благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Скорость звука – скорость распространения упругих волн в среде как в продольных (в газах, жидкостях или твёрдых телах), так и в поперечных, сдвиговых (в твёрдых телах), определяется упругостью и плотностью среды. Скорость звука в твёрдых телах больше, чем в жидкостях. В жидкостях, в том числе в воде, звук мчится в 4 с лишним раза быстрее, чем в воздухе. Скорость звука в газах зависит от температуры среды, в монокристаллах - от направления распространения волны.