Мейоз - это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным , поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале - 2n 2c , в конце - 2n 4c ) - синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) - демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация - процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер - процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии:

  • лептотена (завершение репликации ДНК),
  • зиготена (конъюгация гомологичных хромосом, образование бивалентов),
  • пахитена (кроссинговер, перекомбинация генов),
  • диплотена (выявление хиазм, 1 блок овогенеза у человека),
  • диакинез (терминализация хиазм).

1 - лептотена; 2 - зиготена; 3 - пахитена; 4 - диплотена; 5 - диакинез; 6 - метафаза 1; 7 - анафаза 1; 8 - телофаза 1; 9 - профаза 2; 10 - метафаза 2; 11 - анафаза 2; 12 - телофаза 2.

Метафаза 1 (2n 4c ) - выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим - к центромерам хромосом.

Анафаза 1 (2n 4c ) - случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая - к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) - образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) - демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) - выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим - к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) - деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) - деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза . Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Размножение клеток – один из важнейших биологических процессов, является необходимым условием существования всего живого. Репродукция осуществляется путем деления исходной клетки.

Клетка – это наименьшая морфологическая единица строения любого живого организма, способная к самопроизводству и саморегуляции. Время ее существования от деления до гибели или же последующей репродукции называется клеточным циклом.

Ткани и органы состоят из различных клеток, которые имеют свой период существования. Каждая из них растет и развивается, чтобы обеспечивать жизнедеятельность организма. Длительность митотического периода различна: клетки крови и кожи входят в процесс деления каждые 24 часа, а нейроны способны к репродукции только у новорожденных, а затем вовсе утрачивают способность к размножению.

Существует 2 вида деления — прямое и непрямое . Соматические клетки размножаются непрямым путем, гаметам или половым клеткам присущ мейоз (прямое деление).

Митоз — непрямое деление

Митотический цикл

Митотический цикл включает 2 последовательных этапа: интерфазу и митотическое деление.

Интерфаза (стадия покоя) – подготовка клетки к дальнейшему разделению, где совершается дублирование исходного материала, с последующим его равномерным распределением между новообразованными клетками. Она включает 3 периода:

    • Пресинтетический (G-1) G – от английского gar, то есть промежуток, идет подготовка к последующему синтезу ДНК, выработка ферментов. Экспериментально проводилось ингибирование первого периода, вследствие чего клетка не вступала в следующую фазу.
    • Синтетический (S) — основа клеточного цикла. Происходит репликация хромосом и центриолей клеточного центра. Только после этого клетка может перейти к митозу.
    • Постсинтетический (G-2) или премитотический период — происходит накопление иРНК, которая нужна для наступления собственно митотического этапа. В G-2 периоде синтезируются белки (тубулины) – основная составляющая митотического веретена.

После окончания премитотического периода начинается митотическое деление . Процесс включает 4 фазы:

  1. Профаза – в этот период разрушается ядрышко, растворяется мембрана ядра (нуклеолема), центриоли располагаются на противоположных полюсах, формируя аппарат для деления. Имеет две подфазы:
    • ранняя — видны нитеобразные тела (хромосомы), они еще не четко отделены друг от друга;
    • поздняя — прослеживаются отдельные части хромосом.
  2. Метафаза – начинается с момента разрушения нуклеолемы, когда хромосомы хаотично лежат в цитоплазме и только начинают двигаться к экваториальной плоскости. Между собой все пары хроматид связаны в месте центромеры.
  3. Анафаза – в один момент разобщаются все хромосомы и движутся к противоположным точкам клетки. Это короткая и очень важная фаза, поскольку именно в ней происходит точный раздел генетического материала.
  4. Телофаза – хромосомы останавливаются, снова образуется ядерная мембрана, ядрышка. Посередине образуется перетяжка, она делит тело материнской клетки на две дочерние, завершая митотический процесс. В новообразованных клетках снова начинается G-2 период.

Мейоз — прямое деление


Мейоз — прямое деление

Существует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление) . Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом. Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.

Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.

Профаза 1:

  1. Лептотена — хромосомы просматриваются в виде тоненьких ниток, происходит их укорочение.
  2. Зиготена — стадия конъюгации гомологичных хромосом, как следствие образуются биваленты. Конъюгация важный момент мейоза, хромосомы максимально сближаются друг с другом, чтобы осуществить кроссинговер.
  3. Пахитена — происходит утолщение хромосом, их все большее укорочение, идет кроссинговер (обмен генетической информацией между гомологичными хромосомами, это основа эволюции и наследственной изменчивости).
  4. Диплотена – стадия удвоенных нитей, хромосомы каждого бивалента расходятся, сохраняя связь только в области перекреста (хиазмы).
  5. Диакинез — ДНК начинает конденсироваться, хромосомы становятся совсем короткими и расходятся.

Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.

Метафаза 1 : биваленты расположены посередине клетки.

Анафаза 1 :к противоположным полюсам движутся удвоенные хромосомы.

Телофаза 1 :завершается процесс деления, клетки получают по 23 бивалента.

Без последующего удвоения материала клетка вступает во второй этап деления.

Профаза 2 : снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.

Метафаза 2 : две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.

Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.

Телофаза 2 : процесс деления завершается, формируется ядерная оболочка, и каждая клетка получает по 23 хроматиды.

Мейоз – важный механизм в жизни всех организмов. В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид. Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.

Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.

Биологическое значение мейоза : благодаря мейозу про­исходит редукция числа хромосом. Из одной диплоидной клетки образуется 4 гаплоидных.

Благодаря мейозу обра­зуются генетически различные клетки (в том числе гаметы) , т. к. в процессе мей­оза трижды происходит перекомбинация генетического материала:

1) за счёт кроссинговера;

2) за счёт случайного и независимо­го расхождения гомологичных хромосом;

3) за счёт случайного и независимо­го расхождения кроссоверных хроматид.

Первое и второе деление мейоза складываются из тех же фаз, что и митоз, но сущность изменений в наследственном аппарате другая.

Профаза 1 . (2n4с) Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий. Гомо­логичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют.

Конъюгацией называют процесс тесного сближения гомологичных хромо­сом. Пару конъюгирующих хромосом называют бивален­том. Биваленты продолжают укорачиваться и утолщать­ся. Каждый бивалент образован четырьмя хроматидами. Поэтому его называют тетрадой.

Важнейшим событием является кроссинговер – обмен участками хромосом. Кроссинговер приводит к первой во время мейоза реком­бинации генов.

В конце профазы 1 формируется веретено деления, исчезает ядерная оболочка. Биваленты перемещаются в экватори­альную плоскость.

Метафаза 1. (2n; 4с) Заканчивается формирование веретена деления. Спирализация хромосом максимальна. Биваленты располагаются в плоскости экватора. Причем центромеры гомологичных хромосом обращены к разным полюсам клетки. Расположение бивалентов в экваториаль­ной плоскости равновероятное и случайное, то есть каждая из отцовских и материнских хромосом может быть повер­нута в сторону того или другого полюса. Это создает пред­посылки для второй за время мейоза рекомбинации генов.

Анафаза 1. (2n; 4с) К полюсам расходятся целые хро­мосомы, а не хроматиды, как при митозе. У каждого полюса оказывается половина хромосомного набора. Причем пары хромосом расходятся так, как они располагались в плоскости экватора во время метафазы. В результате возникают самые разнообразные сочетания от­цовских и материнских хромосом, происходит вторая рекомбинация генетического материала.

Телофаза 1. (1n; 2с) У животных и некоторых растений хроматиды деспирализуются, вокруг них формируется ядерная оболочка. Затем происходит деление цитоплазмы (у животных) или образуется разделяющая клеточная стен­ка (у растений). У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе деление мейоза

Интерфаза 2. (1n; 2с) Харак­терна только для животных клеток. Репликация ДНК не происходит. Вторая стадия мейоза включает также профазу, метафазу, анафазу и телофазу.

Профаза 2. (1n; 2с) Хромосомы спирализуются, ядер­ная мембрана и ядрышки разрушаются, центриоли, если они есть, перемещаются к полюсам клетки, формируется веретено деления.

Метафаза 2. (1n; 2с) Формируются метафазная пластинка и веретено деления, нити веретена деления прикреп­ляются к центромерам.

Анафаза 2. (2n; 2с) Центромеры хромосом делятся, хроматиды становятся самостоятельными хромосомами, и нити веретена деления растягивают их к полюсам клетки. Число хромосом в клетке становится диплоидным, но на каждом полюсе формируется гаплоидный набор. Поскольку в метафазе 2 хроматиды хромосом располагаются в плоскости экватора случайно, в анафазе происходит третья рекомбинация генетического материала клетки.

Телофаза 2. (1n; 1с) Нити веретена деления исчезают, хромосомы деспирализуются, вокруг них восстанавливается ядерная оболочка, делится цитоплазма.

Таким образом, в результате двух последовательных делений мейоза диплоидная клетка дает начало четырём дочерним, генетически различным клеткам с гаплоидным набором хромосом.

Задача 1.

Хромосомный набор соматических клеток цветкового растения N равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в метафазе мейоза I и метафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Решение: В соматических клетках 28 хромосом, что соответствует 28 ДНК.

Фазы мейоза

Число хромосом

Количество ДНК

Ин­терфаза 1 (2п4с)

Профаза 1 (2n4с)

Метафаза 1 (2n4с)

Анафаза 1 (2n4с)

Телофаза 1 (1n2с)

Интерфаза 2 (1n2с)

Профаза 2 (1n2с)

Метафаза 2 (1n2с)

Анафаза 2 (2n2с)

Телофаза 2 (1n1с)

  1. Перед началом мейоза количество ДНК – 56, так как оно удвоилось, а число хромосом не изменилось – их 28.
  2. В метафазе мейоза I количество ДНК – 56, число хромосом – 28, гомологичные хромосомы попарно располагаются над и под плоскостью экватора, веретено деления сформировано.
  3. В метафазе мейоза II количество ДНК – 28, хромосом – 14, так как после редукционного деления мейоза I число хромосом и ДНК уменьшилось в 2 раза, хромосомы располагаются в плоскости экватора, веретено деления сформировано.

Задача 2.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Задача 3.

Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в профазе мейоза I и метафазе мейоза II. Объясните результаты в каждом случае.

Задача 4.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетке семязачатка в конце мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 5.

Хромосомный набор соматических клеток крыжовника равен 16. Определите хромосомный набор и число молекул ДНК в телофазе мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

Задача 6.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазе и в конце телофазы мейоза I.

Задача 7.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 8.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и в метафазе мейоза I. Объясните результаты в каждом случае.

Задача 9.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазу и в конце телофазы мейоза I. Объясните, как образуется такое число хромосом и молекул ДНК.

1. Перед началом деления число хромосом = 8, число молекул ДНК = 16 (2n4с); в конце телофазы мейоза I число хромосом = 4, число молекул ДНК = 8.

2. Перед началом деления молекулы ДНК удваиваются, но число хромосом не изменяется, потому что каждая хромосома становится двухроматидной (состоит из двух сестринских хроматид).

3. Мейоз – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается вдвое.

Задача 10.

У крупного рогатого скота в соматических клетках 60 хромосом. Каково будет число хромосом и молекул ДНК в клетках семенников в интерфазе перед началом деления и после деления мейоза I?

1. В интерфазе перед началом деления: хромосом – 60, молекул ДНК – 120; после мейоза I: хромосом – 30, ДНК – 60.

2. Перед началом деления молекулы ДНК удваиваются, их число увеличивается, а число хромосом не изменяется – 60, каждая хромосома состоит из двух сестринских хроматид.

3) Мейоз I – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается в 2 раза.

Задача 11.

Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

1. Клетки пыльцевого зерна сосны и спермии имеют гаплоидный набор хромосом – n.

2. Клетки пыльцевого зерна сосны развиваются из гаплоидных спор МИТОЗОМ.

3. Спермии сосны развиваются из пыльцевого зерна (генеративной клетки) МИТОЗОМ.

Хромосомы – структуры клетки, хранящие и передающие наследственную информацию = ДНК(7) + белок (6).

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид (3) , удерживаемых центромерой (кинетохором ) в области первичной перетяжки (1) , которая делит хромосому на 2 плеча (2) . Иногда бывает вторичная перетяжка (4), в результате которой образуется спутник хромосомы (5).

Отдельные участки молекулы ДНК - гены - ответственны за каждый конкретный признак или свойство организма. Наследственная информация из клетки в клетку передается путем удвоения молекулы ДНК (репликации), транскрипции и трансляции. Главная функция хромосом - хранение и передача наследственной информации, носителем которой является молекула ДНК.

Под микроскопом видно, что хромосомы имеют поперечные полосы , которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение, светлых и темных полос (чередование АТ и ГЦ – пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Во всех соматических клетках любого растительного или животного организма число хромосом одинаково. Половые клетки (гаметы) всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.

В кариотипе человека 46 хромосом – 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (половые хромосомы ХУ), а женщины гомогаметны (половые хромосомы XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Хромосомы одной пары называются гомологичными , они в одинаковых локусах (местах расположения) несут аллельные гены.

У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково. Число хромосом не является видоспецифическим признаком. Однако хромосомный набор в целом видоспецифичен, т. е. свойствен только одному какому-то виду организмов растений или животных.

Кариотип - совокупность внешних количественных и качественных признаков хромосомного набора (число, форма, размер хромосом) соматической клетки, характерных для данного вида

Деление клеток - биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов, процесс увеличения числа клеток путем деления исходной клетки.

Способы деления клеток :

1. амитоз - прямое (простое) деление интерфазного ядра путем перетяжки, которое происходит вне митотического цикла, т. е. не сопровождается сложной перестройкой всей клетки, а также спирализацией хромосом. Амитоз может сопровождаться делением клетки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. По сравнению с митозом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, клетках, которым предстоит делиться: в эпителии и печени позвоночных, зародышевых оболочках млекопитающих, клетках эндосперма семян растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.

2 . митоз - непрямое деление, при котором исходно диплоидная клетка дает две дочерние, также диплоидные клетки; характерен для соматических клеток (клеток тела) всех эукариот (растений и животных); универсальный тип деления.

3. мейоз - осуществляется при образовании половых клеток у животных и спор у растений.

Жизненный цикл клетки (клеточный цикл) – время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.

В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:

часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);

редко делящиеся клетки (клетки печени – гепатоциты);

неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).

Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом . Такой клеточный цикл подразделяется на два основных периода :

митоз или период деления;

интерфаза – промежуток жизни клетки между двумя делениями.

Интерфаза – период между двумя делениями, когда клетка готовится к делению: удваивается количество ДНК в хромосомах, количество других органоидов, синтезируются белки, происходит рост клетки.

К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.

Периоды интерфазы:

1. Пресинтетический период (G 1) - период подготовки к синтезу ДНК после завершения митоза. Происходит образование РНК, белков, ферментов синтеза ДНК, увеличивается количество органоидов. Содержание хромосом (п) и ДНК (с) равно 2п2с.

2. Синтетический период (S-фаза) . Происходит репликация (удвоение, синтез ДНК). В результате работы ДНК-полимераз для каждой из хромосом хромосомный набор становится 2п4с. Так образуются двухроматидные хромосомы.

3. Постсинтетический период (G 2) - время от окончания синтеза ДНК до начала митоза. Завершается подготовка клетки к митозу, удваиваются центриоли, синтезируются белки, завершается рост клетки.

Митоз

это форма деления клеточного ядра, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имела родительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное.

Открыт с помощью светового микроскопа в 1874 г. русским ученым И. Д. Чистяковым в растительных клетках.

В 1878 г. В. Флеммингом и русским ученым П. П. Перемежко этот про­цесс обнаружен в животных клетках. У животных клеток митоз длится 30-60 мин, у растительных - 2-3 ч.

Митоз состоит из четырех фаз :

1. профаза - двухроматидные хромосомы спирализуются и становятся заметными, ядрышко и ядерная оболочка распадаются, образуются нити веретена деле­ния. Клеточный центр делится на две центриоли, расходящиеся к полюсам.

2 . метафаза - фаза скопления хромосом на экваторе клетки: нити веретена деления идут от полюсов и присоединяются к центромерам хромосом: к каждой хромосоме подходят две нити, идущие от двух полюсов.

3 . анафаза - фаза расхождения хромосом, в которой центромеры делятся, а однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки; самая короткая фаза митоза.

4 . т елофаза - окончание деления, движение хромосом заканчивается, и происходит их деспирализация (раскручивание в тонкие нити), формируется ядрышко, восстанавливается ядерная оболочка, на экваторе закладывается перегородка (у растительных кле­ток) или перетяжка (у животных клеток), нити веретена деле­ния растворяются.

Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.

В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.

В опухолевых клетках ход митоза нарушается.

В результате митоза из одной диплоидной клетки, имеющей двухроматидные хромосомы и удвоенное ко­личество ДНК (2n4с), образуются две дочерние диплоидные клетки с однохроматидными хромосомами и одинарным коли­чеством ДНК (2n2с), которые затем вступают интерфазу. Так образуются соматические клетки (клетки тела) организма расте­ния, животного или человека.

Фаза митоза, набор хромосом

(n-хромосомы,

с - ДНК)

Рисунок

Профаза

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.

Метафаза

Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

Тематические задания

А1. Хромосомы состоят из

1) ДНК и белка

2) РНК и белка

3) ДНК и РНК

4) ДНК и АТФ

А2. Сколько хромосом содержит клетка печени человека?

А3. Сколько нитей ДНК имеет удвоенная хромосома

А4. Если в зиготе человека содержится 46 хромосом, то сколько хромосом содержится в яйцеклетке человека?

А5. В чем заключается биологический смысл удвоения хромосом в интерфазе митоза?

1) В процессе удвоения изменяется наследственная информация

2) Удвоенные хромосомы лучше видны

3) В результате удвоения хромосом наследственная информация новых клеток сохраняется неизменной

4) В результате удвоения хромосом новые клетки содержат вдвое больше информации

А6. В какой из фаз митоза происходит расхождение хроматид к полюсам клетки? В:

1) профазе

2) метафазе

3) анафазе

4) телофазе

А7. Укажите процессы, происходящие в интерфазе

1) расхождение хромосом к полюсам клетки

2) синтез белков, репликация ДНК, рост клетки

3) формирование новых ядер, органоидов клетки

4) деспирализация хромосом, формирование веретена деления

А8. В результате митоза возникает

1) генетическое разнообразие видов

2) образование гамет

3) перекрест хромосом

4) прорастание спор мха

А9. Сколько хроматид имеет каждая хромосома до ее удвоения?

А10. В результате митоза образуются

1) зигота у сфагнума

2) сперматозоиды у мухи

3) почки у дуба

4) яйцеклетки у подсолнечника

В1. Выберите процессы, происходящие в интерфазе митоза

1) синтез белков

2) уменьшение количества ДНК

3) рост клетки

4) удвоение хромосом

5) расхождение хромосом

6) деление ядра

В2. Укажите процессы, в основе которых лежит митоз

1) мутации

3) дробление зиготы

4) образование спермиев

5) регенерация тканей

6) оплодотворение

ВЗ. Установите правильную последовательность фаз жизненного цикла клетки

А) анафаза

Б) интерфаза

В) телофаза

Г) профаза

Д) метафаза

Е) цитокинез

Мейоз

это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое и образованию гамет, при этом происходит обмен гомологичными участками парных (гомологичных) хромосом, а, следовательно, и ДНК, прежде чем они разойдутся в дочерние клетки.

В результате мейоза из одной диплоидной клетки (2n) образуется четыре гаплоидные клетки (n).

Открыт в 1882 г. В. Флеммингом у животных, в 1888 г. Э. Страсбургером у растений.

Мейозу предше­ствует интерфаза , поэтому вступают в мейоз хромосомы двухроматидные (2n4с).

Мейоз проходит в два этапа :

1. редукционное деление - наиболее сложный и важный процесс. Он подразделяется на фазы:

А) профаза I : парные хромосомы диплоидной клетки подходят друг к другу, перекрещиваются, образуя мостики (хиазмы), затем обменива­ются участками (кроссинговер), при этом осуществляется пере­комбинация генов, после чего хромосомы расходятся

Б) в метафазе I эти парные хромосомы располагаются по экватору клетки, к каждой из них присоединяется нить веретена деления: к одной хромосоме от одного полюса, ко второй - от другого

В) в анафазе I к полюсам клетки расходятся двухроматидные хромосомы; од­на из каждой пары к одному полюсу, вторая - к другому. При этом число хромосом у полюсов становится вдвое меньше, чем в материнской клетке, но они остаются двухроматидными (n2с)

Г) затем проходит телофаза I, которая сразу же переходит в профа­зу II второго этапа деления мейоза, идущего по типу митоза:

2. эквационное деление . Ин­терфазы в данном случае нет, так как хромосомы двухроматид­ные, молекулы ДНК удвоены.

А) профаза II

Б) в метафазе II двухроматидные хромосомы располагаются по экватору, при этом деление происходит сразу в двух дочерних клетках

В) в анафазе II к полю­сам отходят уже однохроматидные хромосомы

Г) в телофазе II в четырех дочерних клетках формируются ядра и перегородки между клетками.

Таким образом, в результате мейоза получаются четыре гаплоидные клетки с однохроматидными хромосомами (nc): это либо половые клетки (гаметы) животных, либо споры растений.

Фаза мейоза,

набор хромосом

хромосомы,
с - ДНК)

Рисунок

Характеристика фазы, расположение хромосом

Профаза 1
2n4c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.

Метафаза 1
2n4c

Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 1
2n4c

Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.

Телофаза 1
в обеих клетках по 1n2c

Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.

Профаза 2
1n2c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2
1n2c

Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 2
2n2c

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.

Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше.

Однако это противоречит правилу постоянства числа хромосом.

Развитие половых клеток.

Процесс формирования половых клеток называется гаметогенезом . У многоклеточных организмов различают сперматогенез – формирование мужских половых клеток и овогенез – формирование женских половых клеток.

Рассмотрим гаметогенез, происходящий в половых железах животных – семенниках и яичниках.

Сперматогенез – процесс превращения диплоидных предшественников половых клеток – сперматогониев в сперматозоиды.

1. Сперматогонии делятся митозом на две дочерние клетки – сперматоциты первого порядка.

2. Сперматоциты первого порядка делятся мейозом (1-е деление) на две дочерние клетки – сперматоциты второго порядка.

3. Сперматоциты второго порядка приступают ко второму мейотическому делению, в результате которого образуются 4 гаплоидные сперматиды.

4. Сперматиды после дифференцировки превращаются в зрелые сперматозоиды.

Сперматозоид состоит из головки, шейки и хвоста. Он подвижен и благодаря этому вероятность встречи его с гаметами увеличивается.

У мхов и папоротников спермии развиваются в антеридиях, у покрытосеменных растений они образуются в пыльцевых трубках.

Овогенез – образование яйцеклеток у особей женского пола. У животных он происходит в яичниках. В зоне размножения находятся овогонии – первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут. Яйцеклетки неподвижны, имеют шаровидную форму. Они крупнее других клеток и содержат запас питательных веществ для развития зародыша.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений – в семяпочках, локализованных в завязи цветка.

Развитие половых клеток и двойное оплодотворение у цветковых растений.

Схема жизненного цикла цветкового растения.

Взрослая особь диплоидна. В жизненном цикле преобладает спорофит (С > Г).

Взрослое растение здесь является спорофитом, образующим макро (женские ) и микроспоры (мужские) , которые развиваются соответственно в зародышевый мешок и зрелое пыльцевое зерно , являющиеся гаметофитами.

Женский гаметофит у растений – зародышевый мешок.

Мужской гаметофит у растений – пыльцевое зерно.

Чашечка + венчик = ОКОЛОЦВЕТНИК

Тычинка и пестик – репродуктивные органы цветка

Мужские половые клетки созревают в пыльнике (пыльцевом мешке или микроспорангии), расположенном на тычинке.

В нем содержится множество диплоидных клеток, каждая из которых делится путем мейоза и образует 4 гаплоидных пыльцевых зерна (микроспоры), из всех них затем развивается мужской гаметофит .

Каждое пыльцевое зерно делится путем митоза и образует 2 клетки - вегетативную и генеративную . Генеративная клетка еще раз делится путем митоза и образует 2 спермия.

Таким образом, пыльца (проросшая микроспора, созревшее пыльцевое зерно) содержит три клетки - 1 вегетативную и 2 спермия , покрытых оболочкой.

Женские половые клетки развиваются в семязачатке (семяпочке или мегаспорангии), располагающемся в завязи пестика.

Одна из ее диплоидных клеток делится путем мейоза и образует 4 гаплоидных клетки. Из них только одна гаплоидная клетка (мегаспора) трижды делится путем митоза и прорастает в зародышевый мешок (женский гаметофит ),

три другие гаплоидные клетки отмирают.

В результате деления мегаспоры образуются 8 гаплоидных ядер зародышевого мешка, в котором 4 ядра располагаются на одном полюсе, а 4- на противоположном.

Затем от каждого полюса в центр зародышевого мешка мигрирует по одному ядру, сливаясь, они образуют центральное диплоидное ядро зародышевого мешка.

Одна из трех гаплоидных клеток, расположенных у пыльцевхода, является крупной яйцеклеткой, 2 другие - вспомогательные клетки-синергиды.

Опыление - перенос пыльцы с пыльников на рыльце пестика.

Оплодотворение - это процесс слияния яйцеклетки и сперматозоида, в результате чего образуется зигота – зародышевая клетка или первая клетка нового организма

При оплодотворении пыльцевое зерно, попав на рыльце пестика, прорастает по направлению к семязачаткам, расположенным в завязи, за счет своей вегетативной клетки, образующей пыльцевую трубку. На переднем конце пыльцевой трубки находятся 2 спермия (спермии сами двигаться не могут, поэтому продвигаются за счет роста пыльцевой трубки). Проникая в зародышевый мешок через канал в покровах - пыльцевход (микропиле), один спермий оплодотворяет яйцеклетку, а второй сливается с 2n центральной клеткой (диплоидным ядром зародышевого мешка) с образованием 3n триплоидного ядра. Этот процесс получил название двойного оплодотворения , был открыт С.Г. Навашиным в 1898 г. у лилейных. В дальнейшем из оплодотворенной яйцеклетки - зиготы развивается зародыш семени, а из триплоидного ядра - питательная ткань - эндосперм . Так, из семязачатка образуется семя, а из его покровов - семенная кожура. Вокруг семени из завязи и других частей цветка формируется плод .

Тематические задания

А1. Мейозом называется процесс

1) изменения числа хромосом в клетке

2) удвоения числа хромосом в клетке

3) образования гамет

4) конъюгации хромосом

А2. В основе изменения наследственной информации детей

по сравнению с родительской информацией лежат процессы

1) удвоения числа хромосом

2) уменьшения количества хромосом вдвое

3) удвоения количества ДНК в клетках

4) конъюгации и кроссинговера

А3. Первое деление мейоза заканчивается образованием:

2) клеток с гаплоидным набором хромосом

3) диплоидных клеток

4) клеток разной плоидности

А4. В результате мейоза образуются:

1) споры папоротников

2) клетки стенок антеридия папоротника

3) клетки стенок архегония папоротника

4) соматические клетки трутней пчел

А5. Метафазу мейоза от метафазы митоза можно отличить по

1) расположению бивалентов в плоскости экватора

2) удвоению хромосом и их скрученности

3) формированию гаплоидных клеток

4) расхождению хроматид к полюсам

А6. Телофазу второго деления мейоза можно узнать по

1) формированию двух диплоидных ядер

2) расхождению хромосом к полюсам клетки

3) формированию четырех гаплоидных ядер

4) увеличению числа хроматид в клетке вдвое

А7. Сколько хроматид будет содержаться в ядре сперматозоидов крысы, если известно, что в ядрах ее соматических клеток содержится 42 хромосомы

А8. В гаметы, образовавшиеся в результате мейоза попадают

1) копии полного набора родительских хромосом

2) копии половинного набора родительских хромосом

3) полный набор рекомбинированных родительских хромосомы

4) половина рекомбинированного набора родительских хромосом

В1. Установите правильную последовательность процессов, происходящих в мейозе

A) Расположение бивалентов в плоскости экватора

Б) Образование бивалентов и кроссинговер

B) Расхождение гомологичных хромосом к полюсам клетки

Г) формирование четырех гаплоидных ядер

Д) формирование двух гаплоидных ядер, содержащих по две хроматиды