Тип урока: урок-обобщение.

Форма урока: практическое занятие.

  • продолжить формирование мировоззрения учащихся о непрерывности жизни;
  • познакомить с химико-биологической разницей процессов, происходящих в клетке во время митоза и мейоза;
  • формировать умение последовательно выстраивать процессы митоза и мейоза;
  • формировать навыки сравнительного анализа процессов деления клетки;

1. образовательные:

а) актуализировать знания учащихся о разных видах деления клетки (митозе, амитозе, мейозе);

б) сформировать представление о главных чертах сходства и различия между процессами митоза и мейоза, их биологической сущности;

2. воспитательная: развивать познавательный интерес к информации из разных областей науки;

3. развивающие:

а) развивать навыки работы с разными видами информации и способами её предъявления;

б) продолжить работу над развитием навыков анализировать и сравнивать процессы деления клетки;

Учебное оборудование: компьютер с мультимедийным проектором, модель-аппликация “Деление клетки. Митоз и мейоз” (демонстрационный и раздаточный комплекты); таблица “Митоз. Мейоз”.

Структура урока (занятие рассчитано на один академический час, проводится в кабинете биологии с мультимедийным проектором, рассчитано на 10 класс химико-биологического профиля). Краткий план занятия :

1. организационный момент (2 мин);

2. актуализация знаний, основных терминов и понятий, связанных с процессами деления клетки (8 мин);

3. обобщение знаний о процессах митоза и мейоза (13 мин);

4. практическая работа “Черты сходства и различия между митозом и мейозом (15 мин);

Закрепление знаний по изученной теме (5 мин);

Домашнее задание (2 мин).

Подробный конспект занятия:

1. организационный момент . Пояснение цели урока, его место в изучаемой теме, особенности проведения.

2. актуализация знаний , основных терминов и понятий, связанных с процессами деления клетки: - деление клеток;

3. обобщение знаний о процессах деления клетки:

3.1. Митоз:

Демонстрация интерактивной модели “Митоз”;

Практическая работа с моделью-аппликацией “Митоз” (раздаточный материал на каждого ученика, отработка навыка учащихся показывать последовательность процессов митоза);

Работа с моделью-аппликацией “Митоз” (демонстрационный комплект, проверка результатов практической работы)

Беседа о фазах митоза:

Фаза митоза, набор хромосом (n-хромосомы,с - ДНК) Рисунок Характеристика фазы, расположение хромосом
Профаза Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.
Метафаза Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).
Телофаза Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

3.2. Мейоз .

Демонстрация интерактивной модели “Мейоз”

Практическая работа с моделью-аппликацией “Мейоз” (раздаточный материал на каждого ученика, отработка навыка учащихся показывать последовательность процессов мейоза);

Работа с моделью-аппликацией “Мейоз” (демонстрационный комплект, проверка результатов практической работы)

Беседа о фазах мейоза:

Фаза мейоза, набор хромосом (n - хромосомы,
с - ДНК)
Рисунок Характеристика фазы, расположение хромосом
Профаза 1
2n4c
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.
Метафаза 1
2n4c
Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза 1
2n4c
Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.
Телофаза 1
в обеих клетках по 1n2c
Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.
Профаза 2
1n2c
Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.
Метафаза 2
1n2c
Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.
Анафаза 2
2n2c
Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.
Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Беседа об изменении формулы ядра клетки

Беседа о результатах мейоза:

из одной гаплоидной материнской клетки образуется четыре гаплоидные дочерние клетки

Беседа о значении мейоза: а )поддерживает постоянное число хромосом вида из поколения в поколение (диплоидный набор хромосом каждый раз восстанавливается в ходе оплодотворения в результате слияния двух гаплоидных гамет;

б) мейоз - один из механизмов возникновения наследственной изменчивости (комбинативной изменчивости);

4. Практическая работа “Сравнение митоза и мейоза” с использованием презентации “Митоз и мейоз. Сравнительный анализ” (см. Приложение 1)

У учащихся домашние заготовки таблицы:

Отработка черт сходства между митозом и мейозом:

Отработка общих различий между митозом и мейозом (с небольшими уточнениями по фазам деления):

Сравнение Митоз Мейоз
Сходства 1.Имеют одинаковые фазы деления.
2.Перед митозом и мейозом происходит самоудвоение молекул ДНК в хромосомах (редупликация) и спирализация хромосом.
Различия 1. Одно деление. 1. Два последовательных деления.
2. В метафазе все удвоенные хромосомы выстраиваются по экватору раздельно.
3. Нет конъюгации 3. Есть конъюгация
4. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления. 4. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК.
5. Образуются две диплоидные клетки (соматические клетки). 5. Образуются четыре гаплоидные клетки (половые клетки).
6.Происходит в соматических клетках 6. происходит в созревающих половых клетках
7.Лежит в основе бесполого размножения 7.Лежит в основе полового размножения

5. Закрепление материала.

Выполнение задания части В контрольно-измерительных материалов ЕГЭ.

Соотнесите отличительные признаки и типы деления клетки:

Отличительные признаки Типы деления клеток

1. Происходит одно деление А) митоз
2. Гомологичные удвоенные хромосомы выстраиваются по экватору парами (бивалентами).
3. Нет конъюгации В) мейоз
4. Поддерживает постоянное число хромосом вида из поколения в поколение
5. Два последовательных деления.
6. Удвоение молекул ДНК происходит в интерфазе, разделяющий два деления
7. Образуются четыре гаплоидные клетки (половые клетки).
8. Между первым и вторым делением нет интерфазы и не происходит удвоения молекул ДНК.
9. Есть конъюгация
10. Образуются две диплоидные клетки (соматические клетки)
11. В метафазе по экватору выстраиваются все удвоенные хромосомы раздельно

12. Обеспечивает бесполое размножение, регенерацию утраченных частей, замещение клеток у многоклеточных организмов

13. Обеспечивает стабильность кариотипа соматических клеток в течение всей жизни
14.Является одним из механизмов возникновения наследственной изменчивости (комбинативной изменчивости;

6. Домашнее задание:

Таблицу “Сравнение митоза и мейоза” оформить в тетради

Повторить материал о митозе и мейозе (подробно о стадиях)

29,30 (В.В.Пасечник);19,22 с.130-134 (Г.М.Дымшиц)

Подготовить таблицу “Сравнительная характеристика хода митоза и мейоза”

Сравнительная характеристика митоза и мейоза

Фазы клеточного цикла, ее итог Митоз Мейоз
I деление II деление
Интерфаза : синтез ДНК,РНК, АТФ, белков, увеличение

количества органелл,

достраивание второй хроматиды каждой хромосомы

Профаза:

а) спирализация хромосом

б) разрушение ядерной оболочки; в) разрушение ядрышек; г) формирование митотического аппарата:расхождение центриолей к полюсам клетки, образование веретена деления

Метафаза :

а) формирование экваториальной пластинки- хромосомы выстраиваются строго по экватору клетки;

б) прикрепление нитей веретена деления к центромерам;

в) к концу метафазы – начало разъединения сестринских хроматид

Анафаза:

а) завершение разделения сестринских хроматид;

б) расхождение хромосом к полюсам клетки

Телофаза – формирование дочерних клеток:

а) разрушение митотического аппарата; б) разделение цитоплазмы; в) деспирализация хромосом;

Список литературы:

1. И.Н.Пименова, А.В.Пименов – Лекции по общей биологии - Саратов, ОАО “Издательство “Лицей”, 2003 г.

2. Общая биология: учебник для 10-11 классов с углублённым изучением биологии в школе/Под ред. В.К.Шумного, Г.М.Дымшица, А.О.Рувинского. – М., “Просвещение”, 2004г.

3. Н. Грин, У.Стаут, Д. Тейлор – Биология: в 3-х томах. Т.3.: пер. с англ./Под ред. Р.Сопера. – М., “Мир”, 1993 г.

4. Т.Л.Богданова, Е.А.Солодова – Биология: справочник для старшеклассников и поступающих в вузы – М., “АСТ-ПРЕСС ШКОЛА”, 2004 г.

5. Д.И.Мамонтов – Открытая биология: полный интерактивный курс биологии (на CD)– “Физикон”, 2005 г.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Сравнительная характеристика митоза и мейоза

Митоз , или непрямое деление, наиболее широко распространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.)

Мейоз -- это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое.

Сравнение митоза и мейоза

Вопросы для сравнения

1) Какие изменения происходят в ядре до начала деления (в интерфазе)?

Удвоение ДНК, синтез белков и других органических веществ клетки, удвоение органоидов клетки, синтез АТФ

Удвоение ДНК (только перед мейозом I), синтез белков, синтез АТФ. Перед вторым делением интерфаза короткая, т.к. удвоения ДНК не происходит

2) Каковы фазы деления?

Профаза, метафаза, анафаза, телофаза

Два этапа деления:

  • 1 деление профаза I, метафаза I, анафаза I, телофаза I;
  • 2 деление профаза II, метафаза II, анафаза II, телофаза II

3) Характерна ли конъюгация гомологических хромосом?

Нет, не характерна

Да, характерна конъюгация

4) Какое число хромосом получает каждая дочерняя клетка?

n, гаплоидный (одинарный)

2n, диплоидный (двойной)

5) Где происходит данный процесс?

В зоне роста, в зоне деления соматических клеток (например, на кончике корня, в узлах и на верхушке побега рост стебля в длину, в камбиальном слое - рост корня и стебля в ширину, на концах трубчатых костей - рост костей в длину, в надкостнице - рост костей в ширину)

В зоне созревания

6) Какое значение имеет для существования вида?

Размножение одноклеточных организмов бесполым способом (путем деления), рост организмов, регенерация, передача наследственных признаков от материнского организма дочернему организму

Образуются новые половые клетки, предшествует половому размножению; эволюционное значение, характерна изменчивость в основном благодаря конъюгации

1 деление

2 деление

Интерфаза

Набор хромосом 2n

Идет интенсивный синтез белков, АТФ и других органических веществ

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра-зовании яйцеклеток.

Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.

Непродолжительна, происходит спирализация хромосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления

Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру-чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) --кроссинговер. Затем хромосомы расходятся.

Короткая; те же процессы, что и в митозе, но при n хромосом.

Метафаза

Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору.

Происходят процессы, аналогичные тем, что и в митозе.

Происходит то же, что и в митозе, но при nхромосом.

Центромеры, скрепляющие се-стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам.

Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро-мосом, состоящая из двух хроматид, скрепленных общей центромерой.

Происходит то же, что и в митозе, но при n хромосом.

Телофаза

Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки.

Длится недолго Гомологичные хро-мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда.

Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Сходства:

  • Ш Имеют одинаковые фазы деления
  • Ш Перед митозом и мейозом происходит самоудвоение хромосом, спирализация и удвоение молекул ДНК

митоз мейоз деление клетка

Давно уже известны два типа деления клеток: деление митотическое и редукционное. Первое называют также митозом, а второе - мейозом. Первым способом, митозом, делятся все клетки, вторым - только половые.

Сначала - о митозе. Ему предшествует удвоение молекул, несущих наследственную информацию.

Молекулы ДНК, в которых заключен генетический шифр, располагаются в ядре клетки, в особых длинных нитях - хромосомах. У каждого вида животных и растений строго определенное число хромосом. Обычно их несколько десятков. У человека, например, 46 (До 1956 года думали, что в человеческих клетках их 48. Но в 1956 году генетики Тжио и Леван точно установили, что у человека 46, а не 48 хромосом. ). А у одного из червей всего две. У некоторых раков по 200 хромосом. Но рекорд побили микроскопические радиолярии: у одной из них 1600 хромосом!

Когда молекулы ДНК удваиваются, удваиваются и хромосомы. Каждая строит по своему подобию двойника. Значит, какое-то время в наших клетках хромосом бывает вдвое больше, чем обычно.

Между двумя делениями, в так называемой интерфазе, хромосомы в обычный микроскоп не видны. Как будто их нет совсем. В электронный же видно, что они все-таки тут, никуда не делись, но так тонки, что без очень сильного увеличения не заметны. Говорят, что на этой фазе своей деятельности хромосомы имеют вид "ламповых щеток". И в самом деле, они немного похожи на ерши, которыми когда-то прочищали стекла керосиновых ламп.

За десять-двадцать часов относительного покоя между двумя делениями хромосомы должны успеть синтезировать своих двойников с полной копией всех содержащихся в них генов, всех молекул ДНК.

Как только двойники будут готовы, длинные хромосомные нити (оригиналы и их копии) начинают сворачиваться в тугие спирали. А те скручиваются в спирали второго порядка. Смысл этого скручивания вполне понятен. До сих пор хромосомы лежали спутанным клубком, и растянуть их по разным полюсам клетки, наверное, было бы нелегко. Теперь же каждая хромосома - спираль, скрученная спиралью, - очень компактный и удобный для транспортирования "багаж".

Все ДНК человеческой клетки, вытянутые в одну нить, занимают в длину приблизительно около метра, а свернутая дважды спиралью эта нить умещается в 46 хромосомах, длина каждой из которых всего несколько микрон.

Итак, перед делением хромосомы сами себя упаковывают в компактные "вьюки". К этому моменту, который в клеточном делении именуется профазой, оболочка ядра растворяется, а уже известные нам центриоли, или. центросомы, расходятся к противоположным полюсам клетки. Нити так называемого митотического аппарата, или веретена, соединяют каждую хромосому с одним из полюсов.

Затем хромосомы выстраиваются парами (оригинал бок о бок со своей копией) вдоль экватора клетки, как танцоры на балу. Эту стадию деления называют метафазой.

Потом каждая из парных хромосом устремляется к своему полюсу. Партнеры расстаются навсегда, потому что скоро перегородка разделит по экватору старую клетку на две новые. Впечатление такое, будто центриоли тянут к себе хромосомы за ниточки, как марионеток.

И действительно, хромосомы имеют вид, какой бывает у всякого гибкого тела, когда его за ниточку протягивают через жидкость.

Место, за которое ее тянут, у каждой хромосомы всегда одно и то же. Его называют кинетохором, или центромерой. От того, где у хромосомы кинетохор, часто зависит ее форма. Если кинетохор посередине, то хромосома, когда во время митоза ее тащат за нитку, перегибается пополам и становится похожа на латинскую цифру "пять" (V). Если кинетохор у самого конца хромосомы, то она изгибается на манер латинской буквы "йот" (J).

Одно время думали, что нити митотического аппарата - своего рода рельсы, по которым хромосомы катятся к полюсам. Потом решили, что они скорее похожи на тонкие резинки, миниатюрные мускулы, которые, сокращаясь, подтягивают к полюсам свой хромосомный груз. Но тогда, сокращаясь, нити становились бы толще, "худели" бы, удлиняясь. Однако этого не происходит. Укорачиваясь и удлиняясь, они не становятся ни толще, ни тоньше.

По-видимому, механика клеточного веретена иная. Возможно, думают некоторые ученые, нити укорачиваются оттого, что часть составляющих их молекул выходит из игры: то есть из нитей. А добавление молекул в одном линейном направлении приводит к удлинению нитей.

Тем или иным способом хромосомы со скоростью около одного микрона в минуту перетягиваются из центра клетки к ее полюсам. С этого момента митоз переходит в стадию, называемую анафазой.

За анафазой следует телофаза. Спирали хромосом раскручиваются. Снова "ламповые щетки" входят в игру. Клубки нитевидных хромосом обрастают ядерными оболочками: в клетке теперь два ядра-близнеца. Кольцевая перетяжка скоро разделит ее пополам. Каждой половине достанется свое ядро.

Заканчивается клеточное деление удвоением центриолей. Их было четыре - по две на каждом полюсе. Клетка разделилась, и в каждой ее половине оказалось лишь по две центриоли.

На экране электронного микроскопа центриоли похожи на полые цилиндрики, сложенные из трубочек. Центриоли всегда лежат под прямым углом друг к другу. Поэтому одну из них мы видим всегда в поперечном, а другую в продольном разрезе.

В телофазе от каждой из центриолей отпочковывается маленькая центриолька - плотное цилиндрическое тельце. Оно быстро растет, и вот уже в клетке четыре центриоли.

Путем митоза из одной получаются две клетки, совершенно идентичные по наследственности, скрытой в их хромосомах (если ни одна из них не подвергалась мутации).

Обычно митоз длится час или два часа. В нервных тканях митозы случаются очень редко. Зато в костном мозгу, где каждую секунду рождается на свет 10 миллионов эритроцитов, каждую секунду происходит 10 миллионов митозов!

Теперь, прежде чем рассказать о втором типе клеточного деления - о мейозе, мы должны ввести несколько новых терминов.

Набор хромосом, заключенный в ядре нормальной соматической (иными словами, не половой, а обычной) клетки тела, генетики называют двойным - диплоидным. У человека диплоидный набор хромосом равен 46. Все эти 46 хромосом по внешности и величине легко разделяются на идентичные по конфигурации пары (лишь партнеры одной пары - половые хромосомы "x" и "y" - не похожи друг на друга. Но об этом позже).

Набор хромосом, в котором из каждой пары присутствует только один партнер, называют гаплоидным, или ординарным. Все половые клетки, или гаметы, содержат гаплоидный набор хромосом. (Это значит, что в спермиях и в яйцеклетках человека только по двадцать три хромосомы.) Иначе при оплодотворении яйца, когда сливаются материнская и отцовская гаметы, получалась бы зигота с числом хромосом вдвое больше нормального.

Мейоз, предшествующий образованию спермиев и яйцеклеток, призван наделить гаметы вдвое меньшим, гаплоидным, числом хромосом. А когда гаметы сольются, в зиготе будет уже нормальное диплоидное число хромосом. Половина от матери, половина от отца.

Понятно теперь, почему все хромосомы в зиготе парные?

Ведь каждой материнской хромосоме соответствует точно такая же по форме, величине и характеру наследственной информации отцовская хромосома. Парные хромосомы называют гомологичными.

Мейоз начинается с того, что однотипные по конфигурации хромосомы объединяются в пары, конъюгируют. Затем каждая из хромосом каждой пары создает из веществ, растворенных в протоплазме, своего двойника. Как и в митозе.

Теперь однотипных хромосом уже не две, а четыре. Четверками, или тетрадами, плотно прижавшись друг к другу, выстраиваются они вдоль экватора клетки. Нити веретена разъединяют четверки снова на пары, растаскивая их к разным полюсам.

Клетка делится пополам, а потом делится еще раз, но теперь в другой плоскости, перпендикулярной к первой. На этот раз хромосомы не удваиваются. Выстроившиеся по экватору пары расходятся поодиночке в разные концы клетки.

У каждого полюса их теперь вдвое меньше, чем при митозе или в первой фазе мейоза. Поэтому, когда клетка разрывается пополам, рожденные из нее две новые гаметы получают гаплоидное число хромосом. Так как в первой фазе мейоза из одной клетки рождается две диплоидные клетки, то в конце второй его фазы мы имеем четыре гаметы. И в каждой, повторяю, гаплоидное число хромосом. Если это гаметы человеческие, значит, в них будет по двадцать три хромосомы. А когда при оплодотворении они сольются в одну зиготу, хромосом в ней станет сорок шесть.

Зигота дает начало человеческому зародышу, все клетки в котором будут с 46 хромосомами.

Механикой клеточного деления в мейозе - расхождением по разным гаметам парных хромосом, каждая из которых ведет свой род либо от отца, либо от матери, - объясняются многие законы наследственности и изменчивости, открытые Грегором Менделем и другими генетиками.

Польские ученые недавно методом цейтраферной съемки сделали отличный фильм о митозе. Все фазы митоза на экране ускорены в несколько сот раз. В действительности же движения хромосом во время деления происходят значительно медленнее. Я видел этот фильм, и он поразил меня сильнее, чем лучшие из лучших художественных фильмов.

В нем необычные актеры - хромосомы. Они сходятся, расходятся, выстраиваются в ряд и разбегаются в разные стороны, словно танцоры на балу, исполняющие сложные па старинного танца. Американский биолог Мёллер, основатель радиационной генетики, назвал танцем хромосом их странные перемещения во время деления клетки.

Каждую секунду в нашем теле совершаются миллионы митозов! И сотни миллионов неодушевленных, но очень дисциплинированных маленьких балерин исполняют древнейший на земле танец. Танец жизни. В таких танцах клетки тела пополняют свои ряды. И мы растем и существуем.

На согласованном расхождении хромосом к разным полюсам клетки основаны все явления наследственности и жизни. Ведь каждая хромосома - сложное соединение гигантских нуклеиновых кислот и белков. А нуклеиновые кислоты несут в себе великое множество наследственных единиц - генов, то есть суть всего сущего на Земле.

http://nplit.ru "NPLit.ru: Библиотека юного исследователя"

Мейоз - это способ непрямого деления пер­вичных половых клеток (2п2с), в результате кото­рого образуются гаплоидные клетки (lnlc), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза (рис. 2.53). Первое деление мейоза (мейоз I) называется редук­ционным, так как при этом количество хромосом уменьшается вдвое, а второе деление (мейозII) - эквационным, так как в его процессе количество хромосом сохраняется (см. табл. 2.5).

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: профа­зу I, метафазу I, анафазу I и телофазу I. В профа­зе I происходят два важнейших процесса - конъ­югация и кроссинговер. Конъюгация - это процесс слияния гомологичных (парных) хромосом по всей длине. Образовавшиеся в процессе конъюгации пары хромосом сохраняются до конца метафазы I.

Кроссинговер - взаимный обмен гомологичными участками го­мологичных хромосом (рис. 2.54). В результате кроссинговера хро­мосомы, полученные организмом от обоих родителей, приобретают новые комбинации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе ми­тоза, исчезает ядрышко, центриоли расходятся к полюсам клетки, а ядерная оболочка распадается.

В метафазе I пары хромосом выстраиваются по экватору клетки, к их центромерам прикрепляются микротрубочки веретена деления.

В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хро­матид.

В телофазе I вокруг скоплений хромосом у полюсов клетки образуются ядерные оболочки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.

Образовавшиеся в результате мейоза I дочерние клетки (1n2с) генетически разнородны, по­скольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодина­ковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток - 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного со­четания хромосом материнского и отцовского организмов в дочерних клетках.