Устойчивость микроорганизмов к действию антибиотиков вызвана несколькими причинами. В основном они сводятся к следующим. Во-первых, в любой совокупности микроорганизмов, сосуществующих на каком-то определенном участке субстрата, встречаются естественно устойчивые к антибиотикам варианты (примерно одна особь на миллион). При воздействии антибиотика па популяцию основная масса клеток гибнет (если антибиотик обладает бактерицидным действием) или прекращает развитие (если антибиотик обладает бактериостатическим действием). В то же самое время устойчивые к антибиотику единичные клетки продолжают беспрепятственно размножаться. Устойчивость к антибиотику этими клетками передается по наследству, давая начало новой устойчивой к антибиотику популяции. В данном случае происходит селекция (отбор) устойчивых вариантов с помощью антибиотика. Вовторых, у чувствительных к антибиотику микроорганизмов может идти процесс адаптации (приспособления) к вредному воздействию антибиотического вещества. В этом случае может наблюдаться, с одной стороны, замена одних звеньев обмена веществ микроорганизма, естественный ход которых нарушается антибиотиком, другими звеньями, не подверженными действию препарата. При этом микроорганизм также не будет подавляться антибиотиком. С другой - микроорганизмы могут начать усиленно вырабатывать вещества, разрушающие молекулу антибиотика, тем самым нейтрализуя его действие. Например, ряд штаммов стафилококков и спороносных бактерий образует фермент пенициллиназу, разрушающий пенициллин с образованием продуктов, не обладающих антибиотической активностью. Это явление называется энзиматической инактивацией антибиотиков.

Основные пути преодоления устойчивости микроорганизмов к антибиотикам, снижающей эффективность лечения, следующие:

    изыскание и внедрение в практику новых антибиотиков, а также получение производных известных антибиотиков;

    применение для лечения не одного, а одновременно нескольких антибиотиков с различным механизмом действия; в этих случаях одновременно подавляются разные процессы обмена веществ микробной клетки, что ведет к быстрой ее гибели и в значительной степени затрудняет развитие устойчивости у микроорганизмов; применение комбинации антибиотиков с другими химиотерапевтическими препаратами. Например, сочетание стрептомицина с парааминосалициловой кислотой (ПАСК) и фтивазидом резко повышает эффективность лечения туберкулеза;

    подавление действия ферментов, разрушающих антибиотики (например, действие пенициллиназы можно подавить кристаллвиолетом);

    освобождение устойчивых бактерий от факторов множественной лекарственной устойчивости (R-факторов), для чего можно использовать некоторые красители.

11. Строение бактериофага. Взаимодействие бактериофага с микробной клеткой. Практическое использование бактериофагов.

Бактериофаг, как и все Т-четные колифаги, относится к сложным вирусам, т. е. он состоит из икосаэдрической головки диаметром 650 Å, длиной 950 Å и отростка, или хвоста. В капсиде головки находится плотно упакованная двухцепочечная линейная ДНК и фермент транскриптаза в неактивном состоянии. Отросток фага имеет сложное строение. В нем различают полый стержень, покрытый сократимым чехлом, который заканчивается базальной пластинкой с шипами и нитями. Все структуры отростка имеют белковую природу. В области базальной пластинки находится фермент – бактериофаговый лизоцим, способный разрушать муреин клеточной стенки бактерий. Здесь же имеется АТФаза, которая регенерирует энергию для сокращения чехла отростка бактериофага.

В зависимости от формы зрелых фаговых частиц различают следующие морфологические типы бактериофагов:

Состоящие из икосаэдрической головки и спирального хвоста с сократимым чехлом (Т-четные колифаги);

Состоящие из икосаэдрической головки и длинного гибкого несократимого отростка (колифаги Т1 и Т5);

Нитчатые бактериофаги (колифаг fd);

Состоящие из икосаэдрической головки с коротким несократимым отростком (колифаги Т3 и Т7, фаг Р22 бактерий Salmonella typhimurium).

В зависимости от особенностей размножения в чувствительной клетке бактериофаги подразделяются на две группы: вирулентные и умеренные. Вирулентные фаги всегда лизируют зараженные ими бактерии и имеют только один путь развития – литический цикл. Умеренные фаги могут вести себя двояко: после проникновения в клетку нуклеиновая ки-

слота фага либо вовлекается в литический цикл, либо вступает с клеткой-хозяином в своего рода симбиотические отношения, т. е. встраивается в хромосому бактериальной клетки и превращается в профаг, передаваясь

всему потомству данной клетки (лизогенный путь). Бактерии, которые содержат профаг, называются лизогенными.

Неизлечимые заболевания, о которых медики предупреждали нас годами, постепенно входят в жизнь современного человека. Напомним, что Центр по контролю и профилактике заболеваний не так давно сообщил о женщине из Невады, которая умерла от инфекции, устойчивой ко всем известным антибиотикам на земле.

Сейчас подобные случаи — скорее редкость, а не устойчивая тенденция. Однако антибиотики, которые являются основным средством в борьбе с бактериями, постоянно устаревают, потому что штаммы инфекции со временем вырабатывают полную или частичную устойчивость к их воздействию. Так какова же ситуация на сегодняшний день и можем ли мы утверждать, что эра антибиотиков подходит к концу?

Устойчивость к антибиотикам была обнаружена у многих различных разновидностей бактерий, вызывающих пневмонию, половые заболевания и даже пищевые отравления. Микробы быстро мутируют, становясь резистивными к конкретным препаратам, или же включают в собственную структуру гены устойчивости, присущие другим видам. Бактерия — это своего рода биологический конструктор, и во время слияния два представителя разных штаммов могут заимствовать друг у друга те гены, которые позволяют им выжить в агрессивной среде. Поэтому зачастую противостояние медиков и инфекции носит волновой характер: после изобретения более мощного препарата вспышки заболеваний на какое-то время удается подавить. Потом бактерии мутируют, становятся невосприимчивы к лекарству, и ученым приходится искать новые средства воздействия.

В настоящее время последнее поколение антибиотиков (к примеру, колистин и класс карбапенемов, бета-лактамных антибиотиков широкого спектра) уже постепенно приходит в негодность. В 2015 году в Китае были обнаружены бактерии, обладающие резистивным геном MCR-1, чья ДНК была интегрирована в плазмиды (специальные бактериальные образования), а потому мог передаваться от одного вида к другому.

Впрочем, даже если какой-то штамм получает устойчивость к мощному и самому современному препарату, это еще не значит, что более старые лекарства окажутся против него бессильны. Бактерии редко обладают ультимативной, абсолютной защитой от всех медикаментов, хотя за последний год ученые получили достаточно оснований полагать, что скоро подобные супербактерии могут размножиться и вызвать очередную эпидемию.

Трудно предсказать, как изменится ситуация в ближайшие несколько лет. Сейчас долгосрочные прогнозы выглядят довольно мрачно. Если не предпринять решительных мер по разработке нового поколения препаратов, уже к 2050 году даже незначительные заражения могут превратиться в серьезную угрозу. Недуги вроде гонореи или туберкулеза внезапно окажется неизлечимыми. Конечно, ученые отслеживают тенденции генетических мутаций вирулентных штаммов и тратят существенное количество времени и ресурсов на выявление потенциально опасных бактерий. Со стороны обывателей же хорошей профилактической мерой будет даже банальное соблюдение правил элементарной гигиене. Кроме того, нам стоит ограничить повсеместное использование антибиотиков, особенно в сельскохозяйственной среде — фармацевтическим компаниям надлежит проработать и альтернативные способы лечения. Как бы то ни было, специалисты уверены, что полностью решить проблему устойчивости к антибиотикам в ближайшее время не удастся, а значит, что на следующие 10−15 лет у медицины есть важнейшее поле для работы.

Антибиотики предназначены для уничтожения или блокировки роста бактерий, но не все бактерии одинаково чувствительны. Некоторые из них, естественно, невосприимчивы к лекарству. Сопротивление также возникает спонтанно в результате случайных мутаций. Устойчивые штаммы могут продолжить размножаться и процветать, и из одной бактерии получится миллион новых. Антибиотики хорошо действуют на чувствительные бактерии, в то время как любые резистентные не погибают от действия лекарств. Сопротивление также может передаваться от одного вида бактерий к другому.

Виновато ли в этом чрезмерное употребление антибиотиков?

Чем больше антибиотиков используется, тем больше шансов, что бактерии будут вырабатывать иммунитет к нему. Очень часто антибиотики используются не по назначению. Многие из них назначаются и применяются для легких форм инфекций, когда их можно и не прописывать вовсе. Антибиотики бесполезны для лечения инфекций, вызванных вирусами, например, такими как обычная простуда или грипп.

Еще одна проблема - это люди, которые часто проходят не весь курс терапии антибиотиками. Раннее прекращение лечения означает, что большинство выживших бактерий становятся устойчивыми к препарату.

Считается также, что широкое применение антибиотиков для лечения и профилактики болезней в животноводстве привело к появлению резистентных штаммов, некоторые из которых передаются человеку через пищу. Также резистентные бактерии распространяются через прямой контакт с человеком или животным.

Недавно были зарегистрированы случаи венерического заболевания (гонорея), которое было устойчиво ко всем антибиотикам, обычно используемых для лечения этой инфекции. Также зафиксированы случаи с множественной лекарственной устойчивостью к лечению туберкулеза и возникновением угрожающих новых резистентных бактерий, таких как Нью-Дели металло-бета-лактамаз (NDM-1).

Международные поездки и путешествия инфицированных людей также способствуют дальнейшему быстрому распространению устойчивых бактерий в другие страны.

Почему нам не хватает новых антибиотиков?

Фармацевтические компании уделяют повышенное внимание поиску новых антибиотиков, а также разработке новых вакцин для профилактики распространенных инфекций. Но эти проекты являются дорогостоящими, и с точки зрения экономической эффективности для компаний они могут быть менее привлекательными, чем другие бизнес-возможности. Многие из "новых" антибиотиков - химические варианты старых лекарств, и это означает, что развитие устойчивости бактерий может произойти очень быстро.

Что нужно делать?

Если врач прописал вам антибиотики, убедитесь, что вы прошли полный курс лечения, даже если вы почувствовали себя лучше значительно раньше, потому что незавершение курса стимулирует появление сопротивления бактерий.

Помните, что антибиотики - это важные лекарственные средства и должны быть приняты только по назначению врача.

Антибиотики не действуют на вирусные инфекции, только на бактериальные.

Не делите ваши антибиотики с кем-то другим.

Элементарные правила гигиены - мытье рук и соблюдение чистоты при приготовлении еды - могут остановить распространение многих бактерий, в том числе некоторых устойчивых вредных микроорганизмов.

Под резистентностью микроорганизмов к антибактериальным средствам понимают сохранение их способности к размножению в присутствии таких концентраций этих веществ, которые создаются при введении терапевтических доз.

Еще в начале развития химиотерапии при изучении действия трипанового синего на трипаносомы П. Эрлих замечал появление резистентных форм микроорганизмов к данному красителю. По мере расширения арсенала химиопрепаратов увеличивалось число сообщений о таких наблюдениях. Так, после начала ши­рокого применения сульфаниламидных препаратов было отмече­но появление многочисленных штаммов бактерий, которые легко выдерживали терапевтические концентрации данных препаратов.

Антибиотикорезистентные бактерии возникли и стали распро­страняться сразу после внедрения антибиотиков в клиническую практику. Как тревожный сигнал прозвучали сообщения о появлении и распространении пенициллинорезистентных стафилококков. В настоящее время повсеместно возрастает число лекар­ственно-устойчивых форм бактерий. Так, частота обнаружения пенициллиноустойчивых стафилококков доходит до 90-98 %, стрептомициноустойчивых - 60-70 % и выше, резистентность шигелл к ампициллину достигает 90 % и более, к тетрациклину и стрептомицину - 54 % и т. д. Устойчивость к антибиотикам чаще возникает у бактерий, реже у других микроорганизмов (спирохет, риккетсий, хламидий, микоплазм, дрожжеподобных грибов).

Механизмы резистентности микроорганизмов к антибиотикам и другим химиотерапевтическим препаратам сложны и разнооб­разны. Главным образом они связаны со следующими причи­нами:

1) превращением активной формы антибиотика в неактив­ную форму путем ферментативной инактивации и модификации;

2) утратой проницаемости клеточной стенки для определенного химиотерапевтического препарата;

3) нарушениями в системе специфического транспорта данного препарата в бактериальную клетку;

4) возникновением у микроорганизмов альтернативного пути образования жизненно важного метаболита, заменяющего основной путь, блокированный препаратом.

Типы устойчивости бактерий к антибиотикам

Механизмы резистентности могут быть подразделены на пер­вичные и приобретенные .

К первичным механизмам относятся те, которые связаны с отсутствием «мишени» для действия данного препара­та; к приобретенным - изменением «мишени» в результате модификаций, мутаций, рекомбинаций. В первом случае речь идет о естественной (видовой) резистентности, например у микоплазм к пенициллину из-за отсутствия у них клеточной стенки. Однако чаще всего резистентность к химиотерапевтическим препаратам, в том числе антибиотикам, приобретается микробными клетками с генами резистентности (г-гены), которые они получают в процессе своей жизнедеятельности от других клеток данной или соседней популяции. При этом наиболее эффективно и с высокой частотой r-гены передаются плазмидами и транспозонами (см. 6.2). Один транспозон передает резистент­ность только к одному препарату. Плазмиды могут нести не­сколько транспозонов, контролирующих резистентность к разным химиотерапевтическим препаратам, в результате чего формиру­ется множественная резистентность бактерий к различным препаратам.

Устойчивость к антибиотикам бактерий, грибов и простейших также возникает в результате мутаций в хромосомных генах, контролирующих образование структурных и химических компо­нентов клетки, являющихся «мишенью» для действия препарата. Так, например, резистентность дрожжеподобных грибов родаCandida к нистатину и леворину может быть связана с мутацион­ными изменениями цитоплазматическои мембраны.

Биохимические механизмы резистентности бактерий к бета-лактамным антибиотикам разнообразны. Они могут быть связаны с индуцибельным синтезом бета-лактамазы, изменениями в пенициллиносвязывающих белках и других «мишенях». Описано око­ло 10 пенициллиносвязывающих белков - ферментов, участвую­щих в синтезе бактериальной клеточной стенки. Кроме того, ре­зистентность к ампициллину и карбенициллину можно объяснить снижением проницаемости наружной мембраны грамотрицательных бактерий. Развитие того или другого типа резистент­ности определяется химической структурой антибиотика и свойст­вами бактерий. У одного и того же вида бактерий могут сущест­вовать несколько механизмов резистентности.

Механизм быстрого развития резистентности к новым цефалоспоринам, устойчивым к действию цефалоспориназ, зависит от образования комплекса антибиотика с индуцибельными латамазами, При этом гидролиза антибиотика не происходит. Такой ме­ханизм обнаружен у протеев.

Биохимические механизмы приобретенной резистентности к аминогликозидным антибиотикам и левомицетину связаны со способностью бактерий образовывать ферменты (ацетилтрансферазу, аденилтрансферазу, фосфотрансферазу), которые вызыва­ют соответственно ацетилирование, аденилирование или фосфорилирование данных антибиотиков. Устойчивость к тетрациклину обусловлена главным образом специфическим подавлением тран­спорта данного антибиотика в бактериальные клетки и т. д.

Таким образом, происходит образование отдельных резистент­ных особей в бактериальной популяции. Их количество крайне незначительно. Так, одна мутировавшая клетка (спонтанная му­тация), устойчивая к какому-либо химиотерапевтическому препа­рату, приходится на 10 5 -10 9 интактных (чувствительных) кле­ток. Передача г-генов с плазмидами и транспозонами повышает число резистентных особей в популяции на несколько порядков. Однако общее число лекарственно-резистентных бактерий в попу­ляции остается весьма низким.

Формирование лекарственно-устойчивых бактериальных попу­ляций происходит путем селекции. При этом в качестве селек­тивного фактора выступает только соответствующий химиотерапевтический препарат, селективное действие которого состоит в подавлении размножения огромного большинства чувствитель­ных к нему бактерий.

Массовой селекции и распространению антибиотикорезистентных бактериальных популяций способствуют многие факторы. Например, бесконтрольное и нерациональное применение анти­биотиков для лечения и особенно для профилактики различных инфекционных заболеваний без достаточных к тому оснований, а также использование пищевых продуктов (мясо домашних птиц и др.), содержащих антибиотики (тетрациклин), и другие фак­торы.

Первый тип - природная устойчивость , которая определяется свойствами данного вида или рода микроорганизмов. (Устойчивость грамотрицательных бактерий к бензилпенициллину, бактерий - к противогрибковым, грибов - к антибактериальным препаратам).

Второй тип - приобретенная устойчивость .

Она может быть первичной и вторичной .

Термин “приобретенная устойчивость ” применяют в случаях, когда в чувствительной к данному препарату популяции микроорганизмов находят резистентные варианты. Она возникает, в основном, в результате мутаций, которые происходят в геноме клетки.

Первичная устойчивость (как результат мутации) оказывается в отдельных клетках популяции через ее гетерогенность до начала лечения антибиотиками.

Вторичная устойчивость формируется также за счет мутаций может расти при контакте бактерий с антибиотиками. Мутации ненаправлены и не связаны с действием антибиотиков. Последние играют лишь роль селекционирующих агентов. Они елиминують чувствительные особи популяции и, соответственно, начинают преобладать резистентные клетки.

В зависимости от скорости возникновения мутантов приобретенная вторичная устойчивость бывает два типов: стрептомициного и пеницилинового.

Стрептомициновий тип возникает как “одноступенчатая мутация“, когда быстро происходит образование мутантов с высокой устойчивостью после одно-двукратного контакта микроба с антибиотиком. Степень ее не зависит от концентрации препарата (стрептомицина, рифампицина, новобиоцина).

Пенициллиновий тип резистентности формируется постепенно, путем “многоступенчатых мутаций”. Селекция стойких вариантов при этом происходит медленно (пеницилин, ванкомицин, левомицетин, полимиксин, циклосерин)

Резистентность микробов к антибиотикам обеспечивается генами, которые локализуются или в хромосоме, или в составе внехромосомних элементов наследственности (транспозоны, плазмиды).

Хромосомные мутации - самая частая причина изменения рецептора, мишени, с которой взаимодействуют лекарства. Так, белок Р10 на 30s субъединице бактериальной рибосомы является рецептором для прикрепления стрептомицина. У бактерий, устойчивых к действию эритромицина, может повреждаться сайт на50s субединице рибосомы в результате метилирования 23s рРНК.

R-плазмиды могут содержать от одного до десяти и больше разных генов лекарственной резистентности, которая делает микроба нечувствительным к подавляющему большинству антиибиотикив, которые используются в клинике. Некоторые из них (конъюгативные, трансмиссивные) способны передаваться от одного бактериального штамма к другому не только в пределах одного вида, но и часто разных видов и даже родов микробов. Кроме конъюгации возможна передача детерминант устойчивости с помощью трансдукции (у стафилококков), а также трансформации.